J/A+A/666/A12     QSO-DLA and MW stars column densities (Konstantopoulou+, 2022)

Dust depletion of metals from local to distant galaxies. I. Peculiar nucleosynthesis effects and grain growth in the ISM. Konstantopoulou C., De Cia A., Krogager J.-K., Ledoux C., Noterdaeme P., Fynbo J.P.U., Heintz K.E., Watson D., Andersen A.C., Ramburuth-hurt T., Jermann I. <Astron. Astrophys., 666, A12 (2022)> =2022A&A...666A..12K 2022A&A...666A..12K (SIMBAD/NED BibCode)
ADC_Keywords: QSOs ; Stars, nearby ; Abundances ; Optical ; Ultraviolet Keywords: quasars: absorption lines Abstract: Large fractions of metals are missing from the observable gas-phase in the interstellar medium (ISM) because they are incorporated into dust grains. This phenomenon is called dust depletion. It is important to study the depletion of metals into dust grains in the ISM to investigate the origin and evolution of metals and cosmic dust. We characterize the dust depletion of several metals from the Milky Way to distant galaxies. We collected measurements of ISM metal column densities from absorption-line spectroscopy in the literature, and in addition, we determined Ti and Ni column densities from a sample of 70 damped Lyman-α absorbers (DLAs) toward quasars that were observed at high spectral resolution with the Very Large Telescope (VLT) Ultraviolet and Visual Echelle Spectrograph (UVES). We used relative ISM abundances to estimate the dust depletion of 18 metals (C, P, O, Cl, Kr, S, Ge, Mg, Si, Cu, Co, Mn, Cr, Ni, Al, Ti, Zn, and Fe) for different environments (the Milky Way, the Magellanic Clouds, and DLAs toward quasars and towards gamma-ray bursts). We observed overall linear relations between the depletion of each metal and the overall strength of the dust depletion, which we traced with the observed [Zn/Fe]. The slope of these dust depletion sequences correlates with the condensation temperature of the various elements, that is, the more refractory elements show steeper depletion sequences. In the neutral ISM of the Magellanic Clouds, small deviations from linearity are observed as an overabundance of the α-elements Ti, Mg, S, and an underabundance of Mn, including for metal-rich systems. The Ti, Mg, and Mn deviations completely disappear when we assume that all systems in our sample of OB stars observed toward the Magellanic Clouds have an α-element enhancement and Mn underabundance, regardless of their metallicity. This may imply that the Magellanic Clouds have recently been enriched in α-elements, potentially through recent bursts of star formation. We also observe an S overabundance in all local galaxies, which is an effect of ionization due to the contribution of their HII regions to the measured SII column densities. The observed strong correlations of the depletion sequences of the metals all the way from low-metallicity quasi-stellar object DLAs to the Milky Way suggest that cosmic dust has a common origin, regardless of the star formation history, which, in contrast, varies significantly between these different galaxies. This supports the importance of grain growth in the ISM as a significant process of dust production. Description: We characterized the dust depletion of several metals in different environments from the Milky Way, the Magellanic Clouds, and DLAs toward GRBs and QSOs based on the relative abundances of metals with different refractory properties (or how easily they incorporate into dust grains). We collected all the available literature measurements of metal column densities in these environments, making this a comprehensive study of relative chemical abundances of metals and for different environments. We measured new column densities of Ti and Ni in 70 QSO-DLAs from high-resolution UVES spectra from the sample of De Cia et al. (2016A&A...596A..97D 2016A&A...596A..97D). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tabled1.dat 167 129 *QSO-DLA column densities tabled2.dat 126 37 *Milky Way column densities tabled3.dat 124 24 *Milky Way column densities for elements with limited coverage -------------------------------------------------------------------------------- Note on tabled1.dat, tabled2.dat, tabled3.dat: Revised f-values from Cashman et al. (2017ApJS..230....8C 2017ApJS..230....8C), Kisielius et al. (2014ApJ...780...76K 2014ApJ...780...76K, Cat. J/ApJ/780/76; 2015ApJ...804...76K 2015ApJ...804...76K, Cat. J/ApJ/804/76) and Kurucz (2017, Canadian J. Phys., 95, 825). -------------------------------------------------------------------------------- See also: J/ApJ/700/1299 : Gas-phase element depletions in the ISM (Jenkins, 2009) J/MNRAS/452/4326 : Metal-rich damped Lyα systems at z∼2 (Berg+, 2015) Byte-by-byte Description of file: tabled1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- QSO QSO name 16- 19 F4.2 --- zabs Absorption redshift 21- 25 F5.2 [cm-2] logN(HI) ?=- HI column density 27- 30 F4.2 [cm-2] e_logN(HI) ?=- HI column density error 32- 36 F5.2 [cm-2] logN(OI) ?=- OI column density 38- 41 F4.2 [cm-2] e_logN(OI) ?=- OI column density error 43- 47 F5.2 [cm-2] logN(MgII) ?=- MgII column density 49- 52 F4.2 [cm-2] e_logN(MgII) ?=- MgII column density error 54- 58 F5.2 [cm-2] logN(SiII) ?=- SiII column density 60- 63 F4.2 [cm-2] e_logN(SiII) ?=- SiII column density error 65- 69 F5.2 [cm-2] logN(SII) ?=- SII column density 71- 74 F4.2 [cm-2] e_logN(SII) ?=- SII column density error 76- 80 F5.2 [cm-2] logN(PII) ?=- PII column density 82- 85 F4.2 [cm-2] e_logN(PII) ?=- PII column density error 87 A1 --- l_logN(TiII) Limit flag on logN(TiII) 88- 92 F5.2 [cm-2] logN(TiII) ?=- TiII column density 94- 97 F4.2 [cm-2] e_logN(TiII) ?=- TiII column density error 99-103 F5.2 [cm-2] logN(CrII) ?=- CrII column density 105-108 F4.2 [cm-2] e_logN(CrII) ?=- CrII column density error 110-114 F5.2 [cm-2] logN(MnII) ?=- MnII column density 116-119 F4.2 [cm-2] e_logN(MnII) ?=- MnII column density error 121-125 F5.2 [cm-2] logN(FeII) ?=- FeII column density 127-130 F4.2 [cm-2] e_logN(FeII) ?=- FeII column density error 132-136 F5.2 [cm-2] logN(CoII) ?=- CoII column density 138-141 F4.2 [cm-2] e_logN(CoII) ?=- CoII column density error 142 A1 --- l_logN(NiII) Limit flag on logN(NiII) 143-147 F5.2 [cm-2] logN(NiII) ?=- NiII column density 149-152 F4.2 [cm-2] e_logN(NiII) ?=- NiII column density error 154-158 F5.2 [cm-2] logN(ZnII) ?=- ZnII column density 160-163 F4.2 [cm-2] e_logN(ZnII) ?=- ZnII column density error 165-167 A3 --- Refs References (1) -------------------------------------------------------------------------------- Note (1): References as follows: * = This work 1 = De Cia et al. (2016A&A...596A..97D 2016A&A...596A..97D) 2 = Berg et al. (2015MNRAS.452.4326B 2015MNRAS.452.4326B, Cat. J/MNRAS/452/4326) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tabled2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Star Star name 14- 18 F5.2 [cm-2] logN(PII) ?=- PII column density 20- 23 F4.2 [cm-2] e_logN(PII) ?=- PII column density error 25- 29 F5.2 [cm-2] logN(MgII) ?=- MgII column density 31- 34 F4.2 [cm-2] e_logN(MgII) ?=- MgII column density error 36- 40 F5.2 [cm-2] logN(SiII) ?=- SiII column density 42- 45 F4.2 [cm-2] e_logN(SiII) ?=- SiII column density error 47- 51 F5.2 [cm-2] logN(SII) ?=- SII column density 53- 56 F4.2 [cm-2] e_logN(SII) ?=- SII column density error 58- 62 F5.2 [cm-2] logN(TiII) ?=- TiII column density 64- 67 F4.2 [cm-2] e_logN(TiII) ?=- TiII column density error 69- 73 F5.2 [cm-2] logN(CrII) ?=- CrII column density 75- 78 F4.2 [cm-2] e_logN(CrII) ?=- CrII column density error 80- 84 F5.2 [cm-2] logN(MnII) ?=- MnII column density 86- 89 F4.2 [cm-2] e_logN(MnII) ?=- MnII column density error 91- 95 F5.2 [cm-2] logN(FeII) ?=- FeII column density 97-100 F4.2 [cm-2] e_logN(FeII) ?=- FeII column density error 102-106 F5.2 [cm-2] logN(NiII) ?=- NiII column density 108-111 F4.2 [cm-2] e_logN(NiII) ?=- NiII column density error 113-117 F5.2 [cm-2] logN(ZnII) ?=- ZnII column density 119-122 F4.2 [cm-2] e_logN(ZnII) ?=- ZnII column density error 124-126 A3 --- Refs References (1) -------------------------------------------------------------------------------- Note (1): References as follows: 1 = Jenkins (2009ApJ...700.1299J 2009ApJ...700.1299J, Cat J/ApJ/700/1299) 2 = De Cia et al. (2016A&A...596A..97D 2016A&A...596A..97D) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tabled3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Star Star name 12- 16 F5.2 [cm-2] logN(OI) ?=- OI column density 18- 21 F4.2 [cm-2] e_logN(OI) ?=- OI column density error 23- 27 F5.2 [cm-2] logN(FeII) ?=- FeII column density 29- 32 F4.2 [cm-2] e_logN(FeII) ?=- FeII column density error 34- 38 F5.2 [cm-2] logN(ZnII) ?=- ZnII column density 40- 43 F4.2 [cm-2] e_logN(ZnII) ?=- ZnII column density error 45- 49 F5.2 [cm-2] logN(CoII) ?=- CoII column density 51- 54 F4.2 [cm-2] e_logN(CoII) ?=- CoII column density error 56- 60 F5.2 [cm-2] logN(GeII) ?=- GeII column density 62- 65 F4.2 [cm-2] e_logN(GeII) ?=- GeII column density error 67- 71 F5.2 [cm-2] logN(KrI) ?=- KrI column density 73- 76 F4.2 [cm-2] e_logN(KrI) ?=- KrI column density error 78- 82 F5.2 [cm-2] logN(ClII) ?=- ClII column density 84- 87 F4.2 [cm-2] e_logN(ClII) ?=- ClII column density error 89- 93 F5.2 [cm-2] logN(CuII) ?=- CuII column density 95- 98 F4.2 [cm-2] e_logN(CuII) ?=- CuII column density error 100-104 F5.2 [cm-2] logN(AlII) ?=- AlII column density 106-109 F4.2 [cm-2] e_logN(AlII) ?=- AlII column density error 111-115 F5.2 [cm-2] logN(CII) ?=- CII column density 117-120 F4.2 [cm-2] e_logN(CII) ?=- CII column density error 122-124 A3 --- Refs References (1) -------------------------------------------------------------------------------- Note (1): References as follows: 1 = Jenkins (2009ApJ...700.1299J 2009ApJ...700.1299J, Cat. J/ApJ/700/1299) 2 = De Cia et al. (2016A&A...596A..97D 2016A&A...596A..97D) 3 = Phillips et al. (1982MNRAS.200..687P 1982MNRAS.200..687P) -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Patricia Vannier [CDS] 17-Feb-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line