J/A+A/668/A186      Peaked-spectrum sources radio and optical data (Slob+, 2022)

Extragalactic peaked-spectrum radio sources at low frequencies are young radio galaxies. Slob M.M., Callingham J.R., Rottgering H.J.A., Williams W.L., Duncan K.J., de Gasperin F., Hardcastle M.J., Miley G.K. <Astron. Astrophys. 668, A186 (2022)> =2022A&A...668A.186S 2022A&A...668A.186S (SIMBAD/NED BibCode)
ADC_Keywords: Active gal. nuclei ; Galaxies, radio ; Radio sources ; Redshifts ; Optical Keywords: galaxies: active - galaxies: evolution - radio continuum: galaxies Abstract: We present a sample of 373 peaked-spectrum (PS) sources with spectral peaks around 150MHz, selected using a subset of the two LOw Frequency ARray (LOFAR) all-sky surveys, the LOFAR Two Meter Sky Survey and the LOFAR LBA Sky Survey. These LOFAR surveys are the most sensitive low-frequency widefield surveys to date, allowing us to select low-luminosity peaked-spectrum sources. Our sample increases the number of known PS sources in our survey area by a factor 50. The 5GHz luminosity distribution of our PS sample shows we sample the lowest luminosity PS sources to-date by nearly an order of magnitude. Since high-frequency gigahertz-peaked spectrum sources and compact steep-spectrum sources are hypothesised to be the precursors to large radio galaxies, we investigate whether this is also the case for our sample of low-frequency PS sources. Using optical line emission criteria, we find that our PS sources are predominately high-excitation radio galaxies instead of low-excitation radio galaxies, corresponding to a quickly evolving population. We compute the radio source counts of our PS sample, and find they are scaled down by a factor of 40 compared to a general sample of radio-loud active galactic nuclei (AGN). This implies that the lifetimes of PS sources are 40 times shorter than large scale radio galaxies, if their luminosity functions are identical. To investigate this, we compute the first radio luminosity function for a homogeneously-selected PS sample. We find that for 144MHz luminosities ≥1025W/Hz, the PS luminosity function has the same shape as an unresolved radio-loud AGN population but shifted down by a factor of 10.We interpret this as strong evidence that these high-luminosity PS sources evolve into large-scale radio-loud AGN. For local, low-luminosity PS sources, there is a surplus of PS sources, which we hypothesise to be the addition of frustrated PS sources that do not evolve into large-scale AGN. Description: Radio and optical parameters for 373 peaked-spectrum sources identified in LOFAR surveys LoTSS and LoLSS. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file pscat.dat 564 373 Radio and optical parameters of PS sample -------------------------------------------------------------------------------- See also: VIII/65 : 1.4GHz NRAO VLA Sky Survey (NVSS) (Condon+ 1998) VIII/92 : The FIRST Survey Catalog, Version 2014Dec17 (Helfand+ 2015) VIII/97 : 74MHz VLA Low-frequency Sky Survey Redux (VLSSr) (Lane+, 2014) J/A+A/598/A78 : The GMRT 150MHz all-sky radio survey (TGSS) (Intema+, 2017) Byte-by-byte Description of file: pscat.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 22 A22 --- LoTSS Name of source in the LoTSS catalogue, ILTJHHMMSS.ss+DDMMSS.s 24- 32 F9.5 deg RAdeg Right ascension (J2000) of the source in the LoTSS catalogue 34- 41 F8.5 deg DEdeg Declination (J2000) of the source in the LoTSS catalogue 43- 50 F8.6 Jy FLoTSS Integrated LoTSS flux density at 120-168MHz 52- 63 F12.10 Jy e_FLoTSS Uncertainty in integrated LoTSS flux density 65- 76 E12.7 Jy alow Low frequency amplitude of the power-law fit between 54 and 144MHz 78- 88 F11.9 --- alphalow Low frequency spectral index between 54 and 144MHz 90-100 F11.9 --- e_alphalow Uncertainty on low frequency spectral index between 54 and 144MHz 102-114 F13.9 Jy ahigh Low frequency amplitude of the power-law fit between 144 and 1400MHz 116-128 F13.10 --- alphahigh High frequency spectral index between 144 and 1400MHz 130-140 F11.9 --- e_alphahigh Uncertainty on high frequency spectral index between 144 and 1400MHz 142-150 F9.5 deg RALdeg Right ascension (J2000) of the source in the LoLSS catalogue 152-160 F9.6 deg DELdeg Declination (J2000) of the source in the LoLSS catalogue 162-172 F11.9 Jy FLoLSS Integrated LoLSS flux density at 42-66MHz 174-185 F12.10 Jy e_FLoLSS Uncertainty in integrated LoLSS flux density 187-195 F9.5 deg RANdeg Right ascension (J2000) of the source in the NVSS catalogue (Condon et al., 1988, Cat. VIII/65) 197-205 F9.6 deg DENdeg Declination (J2000) of the source in the NVSS catalogue (Condon et al., 1988, Cat. VIII/65) 207-212 F6.4 Jy FNVSS Integrated NVSS flux density at 1.4GHz (Condon et al., 1988, Cat. VIII/65) 214-226 E13.8 Jy e_FNVSS Uncertainty in integrated NVSS flux density 228-237 F10.5 deg RATdeg ? Right ascension (J2000) of the source in the TGSS catalogue (Intema et al., 2017, Cat. J/A+A/598/A78) 239-247 F9.5 deg DETdeg ? Declination (J2000) of the source in the TGSS catalogue (Intema et al., 2017, Cat. J/A+A/598/A78) 249-254 F6.4 Jy FTGSS ?=0 Integrated TGSS flux density at 150MHz (Intema et al., 2017, Cat. J/A+A/598/A78) 256-261 F6.4 Jy e_FTGSS ?=0 Uncertainty in integrated TGSS flux density 263-272 F10.5 deg RAVdeg ? Right ascension (J2000) of the source in the VLSSr catalogue (Lane et al., 2014, Cat. VIII/97) 274-283 F10.6 deg DEVdeg ? Declination (J2000) of the source in the VLSSr catalogue (Lane et al., 2014, Cat. VIII/97) 285-288 F4.2 Jy FVLSSr ?=0 Integrated VLSSr flux density at 74GHz (Lane et al., 2014, Cat. VIII/97) 290-300 F11.9 Jy e_FVLSSr ?=0 Uncertainty in integrated VLSSr flux density 302-310 F9.5 deg RAFdeg Right ascension (J2000) of the source in the FIRST catalogue (Helfand et al., 2015, Cat. VIII/92) 312-320 F9.6 deg DEFdeg Declination (J2000) of the source in the FIRST catalogue (Helfand et al., 2015, Cat. VIII/92) 322-333 F12.10 Jy FFIRST Integrated FIRST flux density at 1.4GHz (Helfand et al., 2015, Cat. VIII/92) 335-347 F13.11 Jy e_FFIRST Uncertainty in integrated FIRST flux density 349-358 F10.5 deg RAideg ? Right ascension (J2000) of the source in the LoTSS in-band spectrum catalogue 360-369 F10.6 deg DEideg ? Declination (J2000) of the source in the LoTSS in-band spectrum catalogue 371-381 F11.9 Jy SinbandLow ?=0 Integrated LoTSS 128MHz in-band flux density 383-394 F12.10 Jy e_SinbandLow ?=0 Uncertainty in integrated LoTSS 128MHz in-band flux density 396-406 F11.9 Jy SinbandMid ?=0 Integrated LoTSS 144MHz in-band flux density 408-419 F12.10 Jy e_SinbandMid ?=0 Uncertainty in integrated LoTSS 144MHz in-band flux density 421-431 F11.9 Jy SinbandHigh ?=0 Integrated LoTSS 160MHz in-band flux density 433-444 F12.10 Jy e_SinbandHigh ?=0 Uncertainty in integrated LoTSS 160MHz in-band flux density 446-472 A27 --- NameOpt Name of source in the optical catalogue 474-483 F10.5 deg RAodeg ? Right ascension (J2000) of the source in the optical catalogue 485-494 F10.6 deg DEodeg ? Declination (J2000) of the source in the optical catalogue 496-508 F13.10 --- zsp ?=0 Spectroscopic redshift 510-518 F9.7 --- zph ?=0 Photometric redshift 520-530 F11.9 --- zbest ?=0 Best redshift 532-534 F3.1 --- RefOpt [1/2] Reference of optical catalogue (LoTSS DR1/DR2) 536-549 E14.9 W/Hz L144MHz ?=0 Calculated 144MHz luminosity 551-564 E14.9 W/Hz L5GHz ?=0 Calculated 5GHz luminosity -------------------------------------------------------------------------------- Acknowledgements: Martje Slob, slob(at)strw.leidenuniv.nl
(End) Patricia Vannier [CDS] 16-Nov-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line