J/A+A/668/A186 Peaked-spectrum sources radio and optical data (Slob+, 2022)
Extragalactic peaked-spectrum radio sources at low frequencies are young radio
galaxies.
Slob M.M., Callingham J.R., Rottgering H.J.A., Williams W.L., Duncan K.J.,
de Gasperin F., Hardcastle M.J., Miley G.K.
<Astron. Astrophys. 668, A186 (2022)>
=2022A&A...668A.186S 2022A&A...668A.186S (SIMBAD/NED BibCode)
ADC_Keywords: Active gal. nuclei ; Galaxies, radio ; Radio sources ;
Redshifts ; Optical
Keywords: galaxies: active - galaxies: evolution - radio continuum: galaxies
Abstract:
We present a sample of 373 peaked-spectrum (PS) sources with spectral
peaks around 150MHz, selected using a subset of the
two LOw Frequency ARray (LOFAR) all-sky surveys, the LOFAR Two Meter
Sky Survey and the LOFAR LBA Sky Survey. These LOFAR surveys are the
most sensitive low-frequency widefield surveys to date, allowing us to
select low-luminosity peaked-spectrum sources. Our sample increases
the number of known PS sources in our survey area by a factor 50. The
5GHz luminosity distribution of our PS sample shows we sample the
lowest luminosity PS sources to-date by nearly an order of magnitude.
Since high-frequency gigahertz-peaked spectrum sources and compact
steep-spectrum sources are hypothesised to be the precursors to large
radio galaxies, we investigate whether this is also the case for our
sample of low-frequency PS sources. Using optical line emission
criteria, we find that our PS sources are predominately
high-excitation radio galaxies instead of low-excitation radio
galaxies, corresponding to a quickly evolving population. We compute
the radio source counts of our PS sample, and find they are scaled
down by a factor of 40 compared to a general sample of radio-loud
active galactic nuclei (AGN). This implies that the lifetimes of PS
sources are 40 times shorter than large scale radio galaxies, if their
luminosity functions are identical. To investigate this, we compute
the first radio luminosity function for a homogeneously-selected PS
sample. We find that for 144MHz luminosities ≥1025W/Hz, the PS
luminosity function has the same shape as an unresolved radio-loud AGN
population but shifted down by a factor of 10.We interpret this as
strong evidence that these high-luminosity PS sources evolve into
large-scale radio-loud AGN. For local, low-luminosity PS sources,
there is a surplus of PS sources, which we hypothesise to be the
addition of frustrated PS sources that do not evolve into large-scale
AGN.
Description:
Radio and optical parameters for 373 peaked-spectrum sources
identified in LOFAR surveys LoTSS and LoLSS.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
pscat.dat 564 373 Radio and optical parameters of PS sample
--------------------------------------------------------------------------------
See also:
VIII/65 : 1.4GHz NRAO VLA Sky Survey (NVSS) (Condon+ 1998)
VIII/92 : The FIRST Survey Catalog, Version 2014Dec17 (Helfand+ 2015)
VIII/97 : 74MHz VLA Low-frequency Sky Survey Redux (VLSSr) (Lane+, 2014)
J/A+A/598/A78 : The GMRT 150MHz all-sky radio survey (TGSS) (Intema+, 2017)
Byte-by-byte Description of file: pscat.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 22 A22 --- LoTSS Name of source in the LoTSS catalogue,
ILTJHHMMSS.ss+DDMMSS.s
24- 32 F9.5 deg RAdeg Right ascension (J2000) of the source in the
LoTSS catalogue
34- 41 F8.5 deg DEdeg Declination (J2000) of the source in the
LoTSS catalogue
43- 50 F8.6 Jy FLoTSS Integrated LoTSS flux density at 120-168MHz
52- 63 F12.10 Jy e_FLoTSS Uncertainty in integrated LoTSS flux density
65- 76 E12.7 Jy alow Low frequency amplitude of the power-law fit
between 54 and 144MHz
78- 88 F11.9 --- alphalow Low frequency spectral index
between 54 and 144MHz
90-100 F11.9 --- e_alphalow Uncertainty on low frequency spectral index
between 54 and 144MHz
102-114 F13.9 Jy ahigh Low frequency amplitude of the power-law fit
between 144 and 1400MHz
116-128 F13.10 --- alphahigh High frequency spectral index
between 144 and 1400MHz
130-140 F11.9 --- e_alphahigh Uncertainty on high frequency spectral index
between 144 and 1400MHz
142-150 F9.5 deg RALdeg Right ascension (J2000) of the source in the
LoLSS catalogue
152-160 F9.6 deg DELdeg Declination (J2000) of the source in the
LoLSS catalogue
162-172 F11.9 Jy FLoLSS Integrated LoLSS flux density at 42-66MHz
174-185 F12.10 Jy e_FLoLSS Uncertainty in integrated LoLSS flux density
187-195 F9.5 deg RANdeg Right ascension (J2000) of the source in the
NVSS catalogue (Condon et al., 1988,
Cat. VIII/65)
197-205 F9.6 deg DENdeg Declination (J2000) of the source in the
NVSS catalogue (Condon et al., 1988,
Cat. VIII/65)
207-212 F6.4 Jy FNVSS Integrated NVSS flux density at 1.4GHz
(Condon et al., 1988, Cat. VIII/65)
214-226 E13.8 Jy e_FNVSS Uncertainty in integrated NVSS flux density
228-237 F10.5 deg RATdeg ? Right ascension (J2000) of the source in
the TGSS catalogue (Intema et al., 2017,
Cat. J/A+A/598/A78)
239-247 F9.5 deg DETdeg ? Declination (J2000) of the source in
the TGSS catalogue (Intema et al., 2017,
Cat. J/A+A/598/A78)
249-254 F6.4 Jy FTGSS ?=0 Integrated TGSS flux density at 150MHz
(Intema et al., 2017, Cat. J/A+A/598/A78)
256-261 F6.4 Jy e_FTGSS ?=0 Uncertainty in integrated TGSS flux
density
263-272 F10.5 deg RAVdeg ? Right ascension (J2000) of the source in
the VLSSr catalogue (Lane et al., 2014,
Cat. VIII/97)
274-283 F10.6 deg DEVdeg ? Declination (J2000) of the source in
the VLSSr catalogue (Lane et al., 2014,
Cat. VIII/97)
285-288 F4.2 Jy FVLSSr ?=0 Integrated VLSSr flux density at 74GHz
(Lane et al., 2014, Cat. VIII/97)
290-300 F11.9 Jy e_FVLSSr ?=0 Uncertainty in integrated VLSSr flux
density
302-310 F9.5 deg RAFdeg Right ascension (J2000) of the source in
the FIRST catalogue (Helfand et al., 2015,
Cat. VIII/92)
312-320 F9.6 deg DEFdeg Declination (J2000) of the source in
the FIRST catalogue (Helfand et al., 2015,
Cat. VIII/92)
322-333 F12.10 Jy FFIRST Integrated FIRST flux density at 1.4GHz
(Helfand et al., 2015, Cat. VIII/92)
335-347 F13.11 Jy e_FFIRST Uncertainty in integrated FIRST flux density
349-358 F10.5 deg RAideg ? Right ascension (J2000) of the source in
the LoTSS in-band spectrum catalogue
360-369 F10.6 deg DEideg ? Declination (J2000) of the source in
the LoTSS in-band spectrum catalogue
371-381 F11.9 Jy SinbandLow ?=0 Integrated LoTSS 128MHz in-band flux
density
383-394 F12.10 Jy e_SinbandLow ?=0 Uncertainty in integrated LoTSS 128MHz
in-band flux density
396-406 F11.9 Jy SinbandMid ?=0 Integrated LoTSS 144MHz in-band flux
density
408-419 F12.10 Jy e_SinbandMid ?=0 Uncertainty in integrated LoTSS 144MHz
in-band flux density
421-431 F11.9 Jy SinbandHigh ?=0 Integrated LoTSS 160MHz in-band flux
density
433-444 F12.10 Jy e_SinbandHigh ?=0 Uncertainty in integrated LoTSS 160MHz
in-band flux density
446-472 A27 --- NameOpt Name of source in the optical catalogue
474-483 F10.5 deg RAodeg ? Right ascension (J2000) of the source in
the optical catalogue
485-494 F10.6 deg DEodeg ? Declination (J2000) of the source in the
optical catalogue
496-508 F13.10 --- zsp ?=0 Spectroscopic redshift
510-518 F9.7 --- zph ?=0 Photometric redshift
520-530 F11.9 --- zbest ?=0 Best redshift
532-534 F3.1 --- RefOpt [1/2] Reference of optical catalogue
(LoTSS DR1/DR2)
536-549 E14.9 W/Hz L144MHz ?=0 Calculated 144MHz luminosity
551-564 E14.9 W/Hz L5GHz ?=0 Calculated 5GHz luminosity
--------------------------------------------------------------------------------
Acknowledgements:
Martje Slob, slob(at)strw.leidenuniv.nl
(End) Patricia Vannier [CDS] 16-Nov-2022