J/A+A/674/A99 Dusty star-forming galaxies effective radius (Hamed+, 2023)
The slippery slope of dust attenuation curves. Correlation of dust attenuation
laws with star-to-dust compactness up to z = 4.
Hamed M., Malek K., Buat V., Junais, Ciesla L., Donevski D., Riccio G.,
Figueira M.
<Astron. Astrophys. 674, A99 (2023)>
=2023A&A...674A..99H 2023A&A...674A..99H (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, IR ; Radio sources ; Morphology ; Galaxies, radius
Keywords: Galaxy: evolution - galaxies: high-redshift -
galaxies: star formation - galaxies: starburst - infrared: galaxies -
galaxies: ISM
Abstract:
We investigate the dust attenuation of 122 heavily dust-obscured
galaxies detected with the Atacama Large Millimeter Array (ALMA) and
Herschel in the COSMOS field. We search for correlations between dust
attenuation recipes and the variation of physical parameters, namely,
the effective radii of galaxies, their star formation rates, and
stellar masses. We aim to understand which of the commonly used laws
best describes dust attenuation in dusty star-forming galaxies (DSFGs)
at high redshift.
We made use of the extensive photometric coverage of the COSMOS data
combined with highly resolved dust continuum maps from ALMA. We used
CIGALE to estimate various physical properties of these dusty objects,
namely: their star formation rates (SFR), their stellar masses, and
their attenuation at short wavelengths. We inferred the effective
radii (Re) of galaxies using GALFIT in the Y band of HSC and ALMA
continuum maps. We used these radii to investigate the relative
compactness of the dust continuum and the extension of the rest-frame
UV/optical Re(y)/Re(ALMA).
We find that the physical parameters calculated from our models
strongly depend on the assumption of the dust attenuation curve. As
expected, the most impacted parameter is the stellar mass, which leads
to a change in the "starburstiness" of the objects. We find that
taking into account the relative compactness of star-to-dust emission
prior to SED fitting is crucial, especially when studying dust
attenuation of dusty star-forming galaxies. Shallower attenuation
curves do not show a clear preference of compactness with attenuation,
while the Calzetti attenuation curve is shown to prefer a comparable
spatial extent of unattenuated stellar light and dust emission. The
evolution of the Re(UV)/Re(ALMA) ratio with redshift peaks around the
cosmic noon in our sample of DSFGs, showing that this compactness is
correlated with the cosmic SFR density of these dusty sources.
Description:
In this paper, we studied a statistical sample of 122 dusty
star-forming galaxies (DSFGs) not hosting AGN across a wide range of
redshift (1<z<4). We derived their circularized effective radii in two
different bands, HSC's Y band when available, and equivalently their
dust components' radii with ALMA detections.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
radiiall.dat 590 124 All radius table
--------------------------------------------------------------------------------
Byte-by-byte Description of file: radiiall.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 27 A27 --- Name Name (HELP_JHHMMSS.sss+DDMMSS.sss) (id)
29- 34 F6.4 --- z Redshift (redshift)
36- 55 F20.18 arcsec/pix ScaleALMA ALMA scale (band 6, 1.3mm) (scale_ALMA)
57- 62 F6.4 --- nALMA ALMA (band 6, 1.3mm) Sersic index
(n_ALMA)
64- 69 F6.4 --- e_nALMA ALMA (band 6, 1.3mm) Sersic index index
(en_ALMA)
71- 77 F7.4 arcsec reALMA ALMA (band 6, 1.3mm) effective radius
in arcsec (re_ALMA)
79- 84 F6.4 arcsec e_reALMA ALMA (band 6, 1.3mm) effective radius
in arcsec error (ere_ALMA)
86- 91 F6.4 mag magALMA ALMA (band 6, 1.3mm) magnitude (mag_ALMA)
93- 98 F6.4 mag e_magALMA ALMA (band 6, 1.3mm) magnitude error
(emag_ALMA)
100-107 F8.4 deg PAALMA ALMA (band 6, 1.3mm) position angle
(PA_ALMA)
109-115 F7.4 deg e_PAALMA ALMA (band 6, 1.3mm) position angle error
(ePA_ALMA)
117-122 F6.4 --- qALMA ALMA (band 6, 1.3mm) axis ratio (q_ALMA)
124-129 F6.4 --- e_qALMA ALMA (band 6, 1.3mm) axis ratio error
(eq_ALMA)
131-139 F9.7 --- rchi2ALMA ALMA (band 6, 1.3mm) reduced chi2
(reducedchi2ALMA)
141-159 F19.17 arcsec recALMA Circularized ALMA (band 6, 1.3mm) radius
recircALMA_arcsec)
161-181 F21.19 arcsec e_recALMA Circularized ALMA (band 6, 1.3mm) radius
error (erecircALMA_arcsec)
183-200 F18.16 kpc reALMAkpc ALMA (band 6, 1.3mm) effective radius
in kpc (reALMAkpc)
202-221 F20.18 kpc e_reALMAkpc ALMA (band 6, 1.3mm) effective radius
in kpc error (ereALMAkpc)
223-241 F19.17 arcsec/pix ScaleY ?=- HSC Y band scale (scale_y)
243-248 F6.4 --- nY ?=- HSC Y band Sersic index (n_y)
250-255 F6.4 --- e_nY ?=- HSC Y band Sersic index error (en_y)
257-262 F6.4 arcsec reY ?=- HSC Y band effective radius in arcsec
(re_y)
264-269 F6.4 arcsec e_reY ?=- HSC Y band effective radius in arcsec
error (ere_y)
271-277 F7.4 mag magY ?=- HSC Y band magnitude (mag_y)
279-284 F6.4 mag e_magY ?=- HSC Y band magnitude error (emag_y)
286-293 F8.4 deg PAY ?=- HSC Y band position angle (PA_y)
295-301 F7.4 deg e_PAY ?=- HSC Y band position angle error
(ePA_y)
303-308 F6.4 --- qY ?=- HSC Y band axis ratio (q_y)
310-315 F6.4 --- e_qY ?=- HSC Y band axis ratio error (eq_y)
317-326 F10.8 --- rchi2Y ?=- HSC Y band reduced chi2
(reducedchi2y)
328-345 F18.16 arcsec recY ?=- Circularized HSC Y band radius
(recircY_arcsec)
347-367 F21.19 arcsec e_recY ?=- Circularized HSC Y band radius error
(erecircY_arcsec)
369-387 F19.16 kpc reYkpc ?=- HSC Y band effective radius
in kpc (reYkpc)
389-408 F20.18 kpc e_reYkpc ?=- HSC Y band effective radius
in kpc error (ereYkpc)
410-423 F14.12 arcsec/pix ScaleVLA ?=- VLA (3GHz) scale (scale_VLA)
425-430 F6.4 --- nVLA ?=- VLA (3GHz) Sersic index (n_VLA)
432-437 F6.4 --- e_nVLA ?=- VLA (3GHz) Sersic index error
(en_VLA)
439-444 F6.4 arcsec reVLA ?=- VLA (3GHz) effective radius in arcsec
(re_VLA)
446-451 F6.4 arcsec e_reVLA ?=- VLA (3GHz) effective radius in arcsec
error (ere_VLA)
453-458 F6.4 mag magVLA ?=- VLA (3GHz) magnitude (mag_VLA)
460-465 F6.4 mag e_magVLA ?=- VLA (3GHz) magnitude error (emag_VLA)
467-474 F8.4 deg PAVLA ?=- VLA (3GHz) position angle (PA_VLA)
476-484 F9.4 deg e_PAVLA ?=- VLA (3GHz) position angle error
(ePA_VLA)
486-491 F6.4 --- qVLA ?=- VLA (3GHz) axis ratio (q_VLA)
493-498 F6.4 --- e_qVLA ?=- VLA (3GHz) axis ratio error (eq_VLA)
500-508 F9.7 --- rchi2VLA ?=- VLA (3GHz) reduced chi2
(reducedchi2VLA)
510-528 F19.17 arcsec recVLA ?=- Circularized VLA radius
(recircVLA_arcsec)
530-550 F21.19 arcsec e_recVLA ?=- Circularized VLA radius error
(erecircVLA_arcsec)
552-569 F18.16 kpc reVLAkpc ?=- VLA effective radius in kpc
(reVLAkpc)
571-590 F20.18 kpc e_reVLAkpc ?=- VLA effective radius in kpc error
(ereVLAkpc)
--------------------------------------------------------------------------------
History:
From Mahmoud Hamed, mahmoud.hamed(at)ncbj.gov.pl
Acknowledgements:
M.H. acknowledges the support of the National Science Centre
(UMO-2022/45/N/ST9/01336).
(End) Patricia Vannier [CDS] 23-May-2025