J/A+A/677/A28       ASAS-SN core-collapse supernova with MUSE     (Pessi+, 2023)

A characterization of ASAS-SN core-collapse supernova environments with VLT+MUSE: I. Sample selection, analysis of local environments, and correlations with light curve properties. Pessi T., Prieto J.L., Anderson J.P., Galbany L., Lyman J.D., Kochanek C., Dong S., Forster F., Gonzalez-Diaz R., Gonzalez-Gaitan S., Gutierrez C.P., Holoien T.W.-S., James P.A., Jimenez-Palau C., Johnston E.J., Kuncarayakti H., Rosales-Ortega F., Sanchez S.F., Schulze S., Shappee B. <Astron. Astrophys. 677, A28 (2023)> =2023A&A...677A..28P 2023A&A...677A..28P (SIMBAD/NED BibCode)
ADC_Keywords: Supernovae ; Redshifts ; Abundances ; Photometry ; Optical Keywords: supernovae: general - galaxies: abundances Abstract: The analysis of core-collapse supernova (CCSN) environments can provide important information on the life cycle of massive stars and constrain the progenitor properties of these powerful explosions. The MUSE instrument at the Very Large Telescope (VLT) enables detailed local environment constraints of the progenitors of large samples of CCSNe. Using a homogeneous SN sample from the All-Sky Automated Survey for Supernovae (ASAS-SN) survey, an untargeted and spectroscopically complete transient survey, has enabled us to perform a minimally biased statistical analysis of CCSN environments. We analyze 111 galaxies observed by MUSE that hosted 112 CCSNe - 78 II, nine IIn, seven IIb, four Ic, seven Ib, three Ibn, two Ic-BL, one ambiguous Ibc, and one superluminous SN - detected or discovered by the ASAS-SN survey between 2014 and 2018. The majority of the galaxies were observed by the the All-weather MUse Supernova Integral field Nearby Galaxies (AMUSING) survey. Here we analyze the immediate environment around the SN locations and compare the properties between the different CCSN types and their light curves. We used stellar population synthesis and spectral fitting techniques to derive physical parameters for all HII regions detected within each galaxy, including the star formation rate (SFR), Hα equivalent width (EW), oxygen abundance, and extinction. Results. We found that stripped-envelope (SE) SNe occur in environments with a higher median SFR, Hα EW, and oxygen abundances than SNe II and SNe IIn/Ibn. Most of the distributions have no statistically significant differences, except between oxygen abundance distributions of SESNe and SNe II, and between Hα EW distributions of SESNe and SNe II. The distributions of SNe II and IIn are very similar, indicating that these events explode in similar environments. For the SESNe, SNe Ic have higher median SFRs, Hα EWs, and oxygen abundances than SNe Ib. SNe IIb have environments with similar SFRs and Hα EWs to SNe Ib, and similar oxygen abundances to SNe Ic. We also show that the postmaximum decline rate, s, of SNe II correlates with the Hα EW, and that the luminosity and the {DELTA}m15 parameter of SESNe correlate with the oxygen abundance, Hα EW, and SFR at their environments. This suggests a connection between the explosion mechanisms of these events to their environment properties. Description: Tables 1 and 2 describe the general properties of the CCSNe and their host galaxies in our sample. Table D1 reports the extracted fluxes of Hα, Hβ, [OIII]λ 5007, [NII]λ 6584, and [SII]λ 6716 for each CCSN. Flux units are given in 10-17erg/cm2/s. Table D2 reports the extracted physical parameters for each CCSN used in this work. Table G1 reports the light curve parameters of magnitude at peak brightness and decline rate on B,V, and r bands for the SNe II. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 101 111 General properties of the SNe and their host galaxies table2.dat 88 111 Distance properties of the HII regions related to each SN tabled1.dat 235 111 Measured fluxes of different emission lines at the neares HII region to each SN tabled2.dat 253 111 Physical properties of the HII region related to each SN tableg1.dat 253 79 Light curve parameters of the SNe II -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name SN name 14- 18 A5 --- Type SN type 20- 21 I2 h RAh SN Right ascension (J2000) 23- 24 I2 min RAm SN Right ascension (J2000) 26- 31 F6.3 s RAs SN Right ascension (J2000) 33 A1 --- DE- SN Declination sign (J2000) 34- 35 I2 deg DEd SN Declination (J2000) 37- 38 I2 arcmin DEm SN Declination (J2000) 40- 44 F5.2 arcsec DEs SN Declination (J2000) 46- 77 A32 --- Host Host galaxy name 79- 86 F8.6 --- zHost ?=- Host galaxy redshift 88- 94 F7.3 mag AvMW ?=- Galactic extinction towards the host galaxy 96-101 F6.2 mag BMAGhost ?=- Host galaxy absolute magnitudes in B band -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name SN name 14- 21 F8.6 --- zcmb CMB redshift 23- 28 F6.2 Mpc DL Luminosity distance to SN 30- 48 F19.14 pc dproj Distance between the SN and HII region 50- 67 F18.14 pc r Radius of HII region 69- 88 F20.18 kpc2 Area Area of HII region -------------------------------------------------------------------------------- Byte-by-byte Description of file: tabled1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name SN name 14- 35 F22.16 10-20W/m2 FHa ?=- Hα flux (in 10-17erg/s/cm2) 37- 58 F22.17 10-20W/m2 e_FHa ?=- Hα flux error (in 10-17erg/s/cm2) 60- 80 F21.16 10-20W/m2 FHb ?=- Hβ flux (in 10-17erg/s/cm2) 82-102 F21.17 10-20W/m2 e_FHb ?=- Hβ flux error (in 10-17erg/s/cm2) 104-125 F22.16 10-20W/m2 FOIII ?=- OIII flux (in 10-17erg/s/cm2) 127-147 F21.17 10-20W/m2 e_FOIII ?=- OIII flux error (in 10-17erg/s/cm2) 149-169 F21.16 10-20W/m2 FNII ?=- NII flux (in 10-17erg/s/cm2) 171-191 F21.17 10-20W/m2 e_FNII ?=- NII flux error (in 10-17erg/s/cm2) 193-213 F21.16 10-20W/m2 FSII ?=- SII flux (in 10-17erg/s/cm2) 215-235 F21.17 10-20W/m2 e_FSII ?=- SII flux error (in 10-17erg/s/cm2) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tabled2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name SN name 14- 33 F20.16 0.1nm EWHa ?=- Hα equivalent width 35- 53 F19.16 0.1nm e_EWHa ?=- Hα equivalent width error 55- 72 F18.16 --- 12+log(O/H)D16 Oxygen abundance in the D16 index 74- 91 F18.16 --- e_12+log(O/H)D16 Error of the oxygen abundance in the D16 index 93-110 F18.16 --- 12+log(O/H)N2 ?=- Oxygen abundance in the N2 index 112-129 F18.16 --- e_12+log(O/H)N2 ?=- Error of the oxygen abundance in the N2 index 131-147 F17.15 --- 12+log(O/H)O3N2 ?=- Oxygen abundance in the O3N2 index 149-166 F18.16 --- e_12+log(O/H)O3N2 ?=- Error of the oxygen abundance in the O3N2 index 168-187 F20.17 [Msun/yr/kpc2] logSigmaSFR ?=- Star formation rate surface density 189-211 E23.20 [Msun/yr/kpc2] e_logSigmaSFR []?=- Star formation rate surface density error 213-232 F20.18 mag E(B-V) ?=- Host galaxy extinction 234-253 F20.18 mag e_E(B-V) ?=- Host galaxy extinction error -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableg1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Name SN name 13- 31 F19.15 mag Vmag ?=- Magnitude at peak brightness in V band 33- 52 F20.18 mag e_Vmag ?=- Error of magnitude at peak brightness in V band 54- 74 E21.16 mag/d s2V ?=- Light curve decline rate in V band 76- 95 F20.18 mag/d e_s2V ?=- Error of light curve decline rate in V band 97-115 F19.15 mag Bmag ?=- Magnitude at peak brightness in B band 117-136 F20.18 mag e_Bmag ?=- Error of magnitude at peak brightness in B band 138-155 F18.16 mag/d s2B ?=- Light curve decline rate in B band 157-174 F18.16 mag/d e_s2B ?=- Error of light curve decline rate in B band 176-194 F19.15 mag rmag ?=- Magnitude at peak brightness in r band 196-215 F20.18 mag e_rmag ?=- Error of magnitude at peak brightness in r band 217-234 F18.16 mag/d s2r ?=- Light curve decline rate in r band 236-253 F18.16 mag/d e_s2r ?=- Error of light curve decline rate in r band -------------------------------------------------------------------------------- Acknowledgements: Thallis Pessi, thallis.pessi(at).mail.udp.cl
(End) Patricia Vannier [CDS] 26-Jun-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line