J/A+A/677/A28 ASAS-SN core-collapse supernova with MUSE (Pessi+, 2023)
A characterization of ASAS-SN core-collapse supernova environments with
VLT+MUSE: I. Sample selection, analysis of local environments, and correlations
with light curve properties.
Pessi T., Prieto J.L., Anderson J.P., Galbany L., Lyman J.D., Kochanek C.,
Dong S., Forster F., Gonzalez-Diaz R., Gonzalez-Gaitan S., Gutierrez C.P.,
Holoien T.W.-S., James P.A., Jimenez-Palau C., Johnston E.J.,
Kuncarayakti H., Rosales-Ortega F., Sanchez S.F., Schulze S., Shappee B.
<Astron. Astrophys. 677, A28 (2023)>
=2023A&A...677A..28P 2023A&A...677A..28P (SIMBAD/NED BibCode)
ADC_Keywords: Supernovae ; Redshifts ; Abundances ; Photometry ; Optical
Keywords: supernovae: general - galaxies: abundances
Abstract:
The analysis of core-collapse supernova (CCSN) environments can
provide important information on the life cycle of massive stars and
constrain the progenitor properties of these powerful explosions. The
MUSE instrument at the Very Large Telescope (VLT) enables detailed
local environment constraints of the progenitors of large samples of
CCSNe. Using a homogeneous SN sample from the All-Sky Automated Survey
for Supernovae (ASAS-SN) survey, an untargeted and spectroscopically
complete transient survey, has enabled us to perform a minimally
biased statistical analysis of CCSN environments.
We analyze 111 galaxies observed by MUSE that hosted 112 CCSNe -
78 II, nine IIn, seven IIb, four Ic, seven Ib, three Ibn, two Ic-BL,
one ambiguous Ibc, and one superluminous SN - detected or discovered
by the ASAS-SN survey between 2014 and 2018. The majority of the
galaxies were observed by the the All-weather MUse Supernova Integral
field Nearby Galaxies (AMUSING) survey. Here we analyze the immediate
environment around the SN locations and compare the properties between
the different CCSN types and their light curves.
We used stellar population synthesis and spectral fitting techniques
to derive physical parameters for all HII regions detected within each
galaxy, including the star formation rate (SFR), Hα equivalent
width (EW), oxygen abundance, and extinction. Results. We found that
stripped-envelope (SE) SNe occur in environments with a higher median
SFR, Hα EW, and oxygen abundances than SNe II and SNe IIn/Ibn.
Most of the distributions have no statistically significant
differences, except between oxygen abundance distributions of SESNe
and SNe II, and between Hα EW distributions of SESNe and SNe II.
The distributions of SNe II and IIn are very similar, indicating that
these events explode in similar environments. For the SESNe, SNe Ic
have higher median SFRs, Hα EWs, and oxygen abundances than SNe
Ib. SNe IIb have environments with similar SFRs and Hα EWs to
SNe Ib, and similar oxygen abundances to SNe Ic. We also show that the
postmaximum decline rate, s, of SNe II correlates with the Hα
EW, and that the luminosity and the {DELTA}m15 parameter of SESNe
correlate with the oxygen abundance, Hα EW, and SFR at their
environments. This suggests a connection between the explosion
mechanisms of these events to their environment properties.
Description:
Tables 1 and 2 describe the general properties of the CCSNe and their
host galaxies in our sample.
Table D1 reports the extracted fluxes of Hα, Hβ,
[OIII]λ 5007, [NII]λ 6584, and [SII]λ 6716 for
each CCSN. Flux units are given in 10-17erg/cm2/s.
Table D2 reports the extracted physical parameters for each CCSN used
in this work.
Table G1 reports the light curve parameters of magnitude at peak
brightness and decline rate on B,V, and r bands for the SNe II.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 101 111 General properties of the SNe and
their host galaxies
table2.dat 88 111 Distance properties of the HII regions
related to each SN
tabled1.dat 235 111 Measured fluxes of different emission lines at
the neares HII region to each SN
tabled2.dat 253 111 Physical properties of the HII region related
to each SN
tableg1.dat 253 79 Light curve parameters of the SNe II
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- Name SN name
14- 18 A5 --- Type SN type
20- 21 I2 h RAh SN Right ascension (J2000)
23- 24 I2 min RAm SN Right ascension (J2000)
26- 31 F6.3 s RAs SN Right ascension (J2000)
33 A1 --- DE- SN Declination sign (J2000)
34- 35 I2 deg DEd SN Declination (J2000)
37- 38 I2 arcmin DEm SN Declination (J2000)
40- 44 F5.2 arcsec DEs SN Declination (J2000)
46- 77 A32 --- Host Host galaxy name
79- 86 F8.6 --- zHost ?=- Host galaxy redshift
88- 94 F7.3 mag AvMW ?=- Galactic extinction towards the host galaxy
96-101 F6.2 mag BMAGhost ?=- Host galaxy absolute magnitudes in B band
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- Name SN name
14- 21 F8.6 --- zcmb CMB redshift
23- 28 F6.2 Mpc DL Luminosity distance to SN
30- 48 F19.14 pc dproj Distance between the SN and HII region
50- 67 F18.14 pc r Radius of HII region
69- 88 F20.18 kpc2 Area Area of HII region
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tabled1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- Name SN name
14- 35 F22.16 10-20W/m2 FHa ?=- Hα flux (in 10-17erg/s/cm2)
37- 58 F22.17 10-20W/m2 e_FHa ?=- Hα flux error
(in 10-17erg/s/cm2)
60- 80 F21.16 10-20W/m2 FHb ?=- Hβ flux (in 10-17erg/s/cm2)
82-102 F21.17 10-20W/m2 e_FHb ?=- Hβ flux error
(in 10-17erg/s/cm2)
104-125 F22.16 10-20W/m2 FOIII ?=- OIII flux (in 10-17erg/s/cm2)
127-147 F21.17 10-20W/m2 e_FOIII ?=- OIII flux error (in 10-17erg/s/cm2)
149-169 F21.16 10-20W/m2 FNII ?=- NII flux (in 10-17erg/s/cm2)
171-191 F21.17 10-20W/m2 e_FNII ?=- NII flux error (in 10-17erg/s/cm2)
193-213 F21.16 10-20W/m2 FSII ?=- SII flux (in 10-17erg/s/cm2)
215-235 F21.17 10-20W/m2 e_FSII ?=- SII flux error (in 10-17erg/s/cm2)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tabled2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- Name SN name
14- 33 F20.16 0.1nm EWHa ?=- Hα equivalent width
35- 53 F19.16 0.1nm e_EWHa ?=- Hα equivalent width
error
55- 72 F18.16 --- 12+log(O/H)D16 Oxygen abundance in the D16
index
74- 91 F18.16 --- e_12+log(O/H)D16 Error of the oxygen abundance
in the D16 index
93-110 F18.16 --- 12+log(O/H)N2 ?=- Oxygen abundance in the N2
index
112-129 F18.16 --- e_12+log(O/H)N2 ?=- Error of the oxygen
abundance in the N2 index
131-147 F17.15 --- 12+log(O/H)O3N2 ?=- Oxygen abundance in the
O3N2 index
149-166 F18.16 --- e_12+log(O/H)O3N2 ?=- Error of the oxygen
abundance in the O3N2 index
168-187 F20.17 [Msun/yr/kpc2] logSigmaSFR ?=- Star formation rate
surface density
189-211 E23.20 [Msun/yr/kpc2] e_logSigmaSFR []?=- Star formation rate
surface density error
213-232 F20.18 mag E(B-V) ?=- Host galaxy extinction
234-253 F20.18 mag e_E(B-V) ?=- Host galaxy extinction
error
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableg1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- Name SN name
13- 31 F19.15 mag Vmag ?=- Magnitude at peak brightness in V band
33- 52 F20.18 mag e_Vmag ?=- Error of magnitude at peak brightness
in V band
54- 74 E21.16 mag/d s2V ?=- Light curve decline rate in V band
76- 95 F20.18 mag/d e_s2V ?=- Error of light curve decline rate
in V band
97-115 F19.15 mag Bmag ?=- Magnitude at peak brightness in B band
117-136 F20.18 mag e_Bmag ?=- Error of magnitude at peak brightness
in B band
138-155 F18.16 mag/d s2B ?=- Light curve decline rate in B band
157-174 F18.16 mag/d e_s2B ?=- Error of light curve decline rate
in B band
176-194 F19.15 mag rmag ?=- Magnitude at peak brightness in r band
196-215 F20.18 mag e_rmag ?=- Error of magnitude at peak brightness
in r band
217-234 F18.16 mag/d s2r ?=- Light curve decline rate in r band
236-253 F18.16 mag/d e_s2r ?=- Error of light curve decline rate
in r band
--------------------------------------------------------------------------------
Acknowledgements:
Thallis Pessi, thallis.pessi(at).mail.udp.cl
(End) Patricia Vannier [CDS] 26-Jun-2023