J/A+A/678/A28       z-GAL. III. Physical properties               (Berta+, 2023)

z-GAL: A NOEMA spectroscopic redshift survey of bright Herschel galaxies. III. Physical properties. Berta S., Stanley F., Ismail D., Cox P., Neri R., Yang C., Young A.J., Jin S., Dannerbauer H., Bakx T.J.L.C., Beelen A., Weiss A., Nanni A., Omont A., Van Der Werf P., Krips M., Baker A.J., Bendo G., Borsato E., Buat V., Butler K.M., Chartab N., Cooray A., Dye S., Eales S., Gavazzi R., Hughes D., Ivison R.J., Jones B.M., Lehnert M., Marchetti L., Messias H., Negrello M., Perez-fournon I., Riechers D.A., Serjeant S., Urquhart S., Vlahakis C. <Astron. Astrophys., 678, A28 (2023)> =2023A&A...678A..28B 2023A&A...678A..28B (SIMBAD/NED BibCode)
ADC_Keywords: Millimetric/submm sources ; Galaxies, IR ; Redshifts ; Photometry, millimetric/submm Keywords: submillimeter: galaxies - galaxies: high-redshift - galaxies: starburst - galaxies: star formation - galaxies: statistics - galaxies: ISM Abstract: The z-GAL survey observed 137 bright Herschel-selected targets with the IRAM Northern Extended Millimeter Array, with the aim to measure their redshift and study their properties. Several of them have been resolved into multiple sources. Consequently, robust spectroscopic redshifts have been measured for 165 individual galaxies in the range 0.8<z<6.5. In this paper we analyse the millimetre spectra of the z-GAL sources, using both their continuum and line emission to derive their physical properties. At least two spectral lines are detected for each source, including transitions of 12CO, [CI], and H2O. The observed 12CO line ratios and spectral line energy distributions of individual sources resemble those of local starbursts. In seven sources the para-H2O (211-202) transition is detected and follows the IR versus H2O luminosity relation of sub-millimetre galaxies. The molecular gas mass of the z-GAL sources is derived from their 12CO, [CI], and sub-millimetre dust continuum emission. The three tracers lead to consistent results, with the dust continuum showing the largest scatter when compared to 12CO. The gas-to-dust mass ratio of these sources was computed by combining the information derived from 12CO and the dust continuum and has a median value of 107, similar to star-forming galaxies of near-solar metallicity. The same combined analysis leads to depletion timescales in the range between 0.1 and 1.0Gyr, which place the z-GAL sources between the 'main sequence' of star formation and the locus of starbursts. Finally, we derived a first estimate of stellar masses - modulo possible gravitational magnification - by inverting known gas scaling relations: the z-GAL sample is confirmed to be mostly composed by starbursts, whereas ∼25% of its members lie on the main sequence of star-forming galaxies (within ±0.5dex). Description: We presented a detailed analysis of the z-GAL sample, based on NOEMA millimetre observations of both dust continuum and lines emission, and comprising 165 individual sources with robust spectroscopic redshift (Paper I, Cox et al., 2023A&A...678A..26C 2023A&A...678A..26C, Cat. J/A+A/678/A26 and Neri et al., 2020A&A...635A...7N 2020A&A...635A...7N, Cat. J/A+A/635/A7). The detected spectral emission lines include 12CO, H2O, and [CI] transitions. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tableb1.dat 101 177 Values of L'12CO of all detected transitions of the z-GAL sources tableb2.dat 136 177 *Derived physical properties of the z-GAL sources -------------------------------------------------------------------------------- Note on tableb2.dat: Dust modelling has been performed only for single sources or secure lensed multiples, therefore for all other cases several columns are not filled. -------------------------------------------------------------------------------- See also: J/A+A/678/A26 : z-GAL. I. Overview (Cox+, 2023)www J/A+A/678/A27 : z-GAL. II. Dust continuum properties (Ismail+, 2023) Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 17 A17 --- Source Source name 19- 24 F6.4 --- z ?=- Redshift 26- 30 F5.2 10+10K.km/s/pc2 muL(12CO(2-1)) ?=- Line luninosity of 12CO(2-1) 32- 35 F4.2 10+10K.km/s/pc2 e_muL(12CO(2-1)) ? Line luninosity of 12CO(2-1) error 37- 41 F5.2 10+10K.km/s/pc2 muL(12CO(3-2)) ?=- Line luninosity of 12CO(3-2) 43- 46 F4.2 10+10K.km/s/pc2 e_muL(12CO(3-2)) ? Line luninosity of 12CO(3-2) error 48- 52 F5.2 10+10K.km/s/pc2 muL(12CO(4-3)) ?=- Line luninosity of 12CO(4-3) 54- 57 F4.2 10+10K.km/s/pc2 e_muL(12CO(4-3)) ? Line luninosity of 12CO(4-3) error 59- 63 F5.2 10+10K.km/s/pc2 muL(12CO(5-4)) ?=- Line luninosity of 12CO(5-4) 65- 68 F4.2 10+10K.km/s/pc2 e_muL(12CO(5-4)) ? Line luninosity of 12CO(5-4) error 70- 74 F5.2 10+10K.km/s/pc2 muL(12CO(6-5)) ?=- Line luninosity of 12CO(6-5) 76- 79 F4.2 10+10K.km/s/pc2 e_muL(12CO(6-5)) ? Line luninosity of 12CO(6-5) error 82- 85 F4.2 10+10K.km/s/pc2 muL(12CO(7-6)) ?=- Line luninosity of 12CO(7-6) 87- 90 F4.2 10+10K.km/s/pc2 e_muL(12CO(7-6)) ? Line luninosity of 12CO(7-6) error 93- 96 F4.2 10+10K.km/s/pc2 muL(12CO(8-7)) ?=- Line luninosity of 12CO(8-7) 98-101 F4.2 10+10K.km/s/pc2 e_muL(12CO(8-7)) ? Line luninosity of 12CO(8-7) error -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 17 A17 --- Source Source name 19- 21 A3 --- Trans Lowest CO transition 23- 27 F5.2 10+10K/km/s/pc2 muL(12CO(1-0)) ?=- Line luninosity of 12CO(1-0) 29- 33 F5.2 10+10K/km/s/pc2 e_muL(12CO(1-0)) ? Line luninosity of 12CO(1-0) error 35- 39 F5.2 10+11Msun muMmol12CO ?=- Molecular gas mass from 12CO 41- 45 F5.2 10+11Msun e_muMmol12CO ? Molecular gas mass from 12CO error 47- 51 F5.2 10+11Msun muMmol850um ?=- Molecular gas mass from 850um continuum 53- 56 F4.2 10+11Msun e_muMmol850um ? Molecular gas mass from 850um continuum error 58- 63 F6.2 --- deltaGDR ?=- Gas-to-dust mass ratio from 12CO conversion factor 65- 70 F6.2 --- e_deltaGDR ? Gas-to-dust mass ratio from 12CO conversion factor error 72- 77 F6.2 10+11Lsun muLIR ?=- IR luminosity 79- 83 F5.2 10+11Lsun e_muLIR ? IR luminosity error 85- 91 F7.2 Msun/yr muSFR ?=- Star formation rate 93- 98 F6.2 Msun/yr e_muSFR ? Star formation rate error 100-103 F4.2 10+9yr taudep ?=- Depletion timescale from 12CO conversion factor 105-108 F4.2 10+9yr e_taudep ? Depletion timescale from 12CO conversion factor error 110-114 F5.2 10+11Msun muEM* ?=- µEM* value (1) 116-120 F5.2 10+11Msun e_muEM* ? µEM* value error 122-125 F4.2 --- E ?=- Extra term , E=C/(C(0.84+0,026t)-D 127-131 F5.2 [-] Dlog(MS) ?=- Distance of each z-GAL galaxy from the MS, log(muSFR/SFR(MS)) 133-136 F4.2 [-] e_Dlog(MS) ? Distance of each z-GAL galaxy from the MS error -------------------------------------------------------------------------------- Note (1): where µ is the lens magnification, E=C/(C(0.84+0,026t)-D, and M* is the stellar mass. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Cox et al., Paper I 2023A&A...678A..26C 2023A&A...678A..26C, Cat. J/A+A/678/A26 Ismail et al., Paper II 2023A&A...678A..27I 2023A&A...678A..27I, Cat. J/A+A/678/A27
(End) Patricia Vannier [CDS] 30-Nov-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line