J/A+A/678/A67       Nb I-IV and Ag I-IV oscillator strengths   (Ben Nasr+, 2023)

Atomic data and expansion opacity calculations in two representative 4d transition elements, niobium and silver, of interest for kilonovae studies. Ben Nasr S., Carvajal Gallego H., Deprince J., Palmeri P., Quinet P. <Astron. Astrophys. 678, A67 (2023)> =2023A&A...678A..67B 2023A&A...678A..67B (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics Keywords: Atomic data ; Atomic processes ; Opacity Abstract: Neutron star (NS) mergers are thought to be a source of heavy trans-iron element production. The latter can be detected in the spectra of the ejected materials, from which bright electromagnetic radiation is emitted. This latter is due to the radioactive decay of the produced heavy r-process nuclei and is known as kilonova. Because of their complex atomic structures - characterized by configurations involving unfilled nd or nf subshells - the heavy elements of the kilonova ejecta often give rise to numerous absorption lines generating significant opacities. The determination of the latter, which are of paramount importance for the analysis of kilonova light curves, requires knowledge of the radiative parameters of the spectral lines belonging to the ions expected to be present in the kilonova ejecta. The aim of the present work is to provide new atomic opacity data for two representative 4d elements, niobium (Nb) and silver (Ag), in their first four charge states, namely for Nb I-IV and Ag I-IV. Large-scale calculations based on the pseudo-relativistic Hartree-Fock (HFR) method were performed to obtain the atomic structure and radiative parameters while the expansion formalism was used to estimate the opacities. Wavelengths and oscillator strengths were computed for several million spectral lines in Nb I-IV and Ag I-IV ions. The reliability of these parameters was estimated by comparison with the few previously published experimental and theoretical results. The newly obtained atomic data were then used to calculate expansion opacities for typical kilonova conditions expected one day after NS merger, a density of ρ=10-13g/cm3, and temperatures ranging from T=5000K to T=15000K. Description: Pseudo-relativistic Hartree-Fock (HFR) oscillator strengths for experimentally observed radiative transitions in Nb I-IV and Ag I-IV ions and comparison with previously published data. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table3.dat 68 76 Oscillator strengths (log gf) for experimentally observed lines in Nb I table4.dat 74 67 Oscillator strengths (log gf) for experimentally observed lines in Nb II table5.dat 68 53 Oscillator strengths (log gf) for experimentally observed lines in Nb III table6.dat 68 96 Oscillator strengths (log gf) for experimentally observed lines in Nb IV table7.dat 80 24 Oscillator strengths (log gf) for experimentally observed lines in Ag I table8.dat 74 85 Oscillator strengths (log gf) for experimentally observed lines in Ag II table9.dat 74 109 Oscillator strengths (log gf) for experimentally observed lines in Ag III table10.dat 68 494 Oscillator strengths (log gf) for experimentally observed lines in Ag IV -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 17 A17 --- Lev(even) Even level 19- 35 A17 --- Lev(odd) Odd level 38- 46 F9.3 0.1nm Lambda(HFR) HFR wavelength (1) 48- 56 F9.3 0.1nm Lambda(EXP) Experimental wavelength (2) 58- 62 F5.2 --- loggf(HFR) Weighted oscillator strength (1) 64- 68 F5.2 --- loggf(prev) Weighted oscillator strength (2) -------------------------------------------------------------------------------- Note (1): Computed in the present work Note (2): From Gao et al., 2019ApJS..242...23G 2019ApJS..242...23G -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 17 A17 --- Lev(even) Even level 19- 35 A17 --- Lev(odd) Odd level 38- 46 F9.3 0.1nm Lambda(HFR) HFR wavelength (1) 48- 56 F9.3 0.1nm Lambda(EXP) Experimental wavelength (2) 58- 62 F5.2 --- loggf(HFR) Weighted oscillator strength (1) 64- 68 F5.2 --- loggf(prev)1 Weighted oscillator strength (2) 70- 74 F5.2 --- loggf(prev)2 Weighted oscillator strength (3) -------------------------------------------------------------------------------- Note (1): Computed in the present work Note (2): From Nilsson et al., 2010A&A...511A..16N 2010A&A...511A..16N Note (3): From Ruczkowski et al., JQSRT, 155, 1 (2015) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 17 A17 --- Lev(even) Even level 19- 35 A17 --- Lev(odd) Odd level 38- 46 F9.3 0.1nm Lambda(HFR) HFR wavelength (1) 48- 56 F9.3 0.1nm Lambda(EXP) Experimental wavelength (2) 58- 62 F5.2 --- loggf(HFR) Weighted oscillator strength (1) 64- 68 F5.2 --- loggf(prev) Weighted oscillator strength (2) -------------------------------------------------------------------------------- Note (1): Computed in the present work Note (2): From Nilsson et al., 2010A&A...511A..16N 2010A&A...511A..16N -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 17 A17 --- Lev(even) Even level 19- 35 A17 --- Lev(odd) Odd level 38- 46 F9.3 0.1nm Lambda(HFR) HFR wavelength (1) 48- 56 F9.3 0.1nm Lambda(EXP) Experimental wavelength (2) 58- 62 F5.2 --- loggf(HFR) Weighted oscillator strength (1) 64- 68 F5.2 --- loggf(prev) Weighted oscillator strength (2) -------------------------------------------------------------------------------- Note (1): Computed in the present work Note (2): From Kramida et al., NIST [https://physics.nist.gov/asd] (2023) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table7.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 17 A17 --- Lev(even) Even level 19- 35 A17 --- Lev(odd) Odd level 38- 46 F9.3 0.1nm Lambda(HFR) HFR wavelength (1) 48- 56 F9.3 0.1nm Lambda(EXP) Experimental wavelength (2) 58- 62 F5.2 --- loggf(HFR) Weighted oscillator strength (1) 64- 68 F5.2 --- loggf(prev)1 Weighted oscillator strength (2) 70- 74 F5.2 --- loggf(prev)2 ? Weighted oscillator strength (3) 76- 80 F5.2 --- loggf(prev)3 ? Weighted oscillator strength (4) -------------------------------------------------------------------------------- Note (1): Computed in the present work Note (2): From Pickering et al., EPJD, 181, 13 (2001) Note (3): From Glowacki et al., Phys. Rev A, 80, 042505 (2009) Note (4): From Kramida et al., NIST [https://physics.nist.gov/asd] (2023) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table8.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 17 A17 --- Lev(even) Even level 19- 35 A17 --- Lev(odd) Odd level 38- 46 F9.3 0.1nm Lambda(HFR) HFR wavelength (1) 48- 56 F9.3 0.1nm Lambda(EXP) Experimental wavelength (2) 58- 62 F5.2 --- loggf(HFR) Weighted oscillator strength (1) 64- 68 F5.2 --- loggf(prev)1 ? Weighted oscillator strength (2) 70- 74 F5.2 --- loggf(prev)2 ? Weighted oscillator strength (3) -------------------------------------------------------------------------------- Note (1): Computed in the present work Note (2): From Kramida et al., NIST [https://physics.nist.gov/asd] (2023) Note (3): From Ruczkowski et al., 2016MNRAS.459.3768R 2016MNRAS.459.3768R -------------------------------------------------------------------------------- Byte-by-byte Description of file: table9.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 17 A17 --- Lev(even) Even level 19- 35 A17 --- Lev(odd) Odd level 38- 46 F9.3 0.1nm Lambda(HFR) HFR wavelength (1) 48- 56 F9.3 0.1nm Lambda(EXP) Experimental wavelength (2) 58- 62 F5.2 --- loggf(HFR) Weighted oscillator strength (1) 64- 68 F5.2 --- loggf(prev)1 ? Weighted oscillator strength (2) 70- 74 F5.2 --- loggf(prev)2 ? Weighted oscillator strength (3) -------------------------------------------------------------------------------- Note (1): Computed in the present work Note (2): From Ankita & Tauheed, JQSRT, 05, 022 (2018) Note (3): From Zhang et al., Phys. Scr., 88, 065302 (2013) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table10.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 17 A17 --- Lev(even) Even level 19- 35 A17 --- Lev(odd) Odd level 38- 46 F9.3 0.1nm Lambda(HFR) HFR wavelength (1) 48- 56 F9.3 0.1nm Lambda(EXP) Experimental wavelength (2) 58- 62 F5.2 --- loggf(HFR) Weighted oscillator strength (1) 64- 68 F5.2 --- loggf(prev) ? Weighted oscillator strength (2) -------------------------------------------------------------------------------- Note (1): Computed in the present work Note (2): From Ankita & Tauheed, JQSRT, 254, 107193 -------------------------------------------------------------------------------- Acknowledgements: Pascal Quinet, Pascal.QUINET(at)umons.ac.be
(End) Pascal Quinet [Univ. of Mons, Belgium], Patricia Vannier [CDS] 28-Sep-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line