J/A+A/679/A56 Shape models and spin states of Jupiter Trojans (Hanus+, 2023)
Shape models and spin states of Jupiter Trojans.
Testing the streaming instability formation scenario.
Hanus J., Vokrouhlicky D., Nesvorny D., Durech J., Stephens R., Benishek V.,
Oey J., Pokorny P.
<Astron. Astrophys. 679, A56 (2023)>
=2023A&A...679A..56H 2023A&A...679A..56H (SIMBAD/NED BibCode)
ADC_Keywords: Solar system ; Minor planets ; Photometry, CCD
Keywords: minor planets, asteroids: individual: Jupiter Trojans - surveys -
methods: observational - methods: data analysis
Abstract:
The leading theory for the origin of Jupiter Trojans (JTs) assumes
that JTs were captured to their orbits near the Lagrangian points of
Jupiter during the early reconfiguration of the giant planets. The
natural source region for the majority of JTs would then be the
population of planetesimals born in a massive trans-Neptunian disk. If
true, JTs represent the most accessible stable population of small
Solar System bodies that formed in the outer regions of the Solar
System. For this work, we compiled photometric datasets for about 1000
JTs and applied the convex inversion technique in order to assess
their shapes and spin states. We obtained full solutions for 79 JTs,
and partial solutions for an additional 31 JTs. We found that the
observed distribution of the pole obliquities of JTs is broadly
consistent with expectations from the streaming instability, which is
the leading mechanism for the formation of planetesimals in the
trans-Neptunian disk. The observed JTs' pole distribution has a
slightly smaller prograde vs. retrograde asymmetry (excess of
obliquities > 130 deg) than what is expected from the existing
streaming instability simulations. However, this discrepancy can be
plausibly reconciled by the effects of the post-formation collisional
activity. Our numerical simulations of the post-capture spin evolution
indicate that the JTs' pole distribution is not significantly affected
by dynamical processes such as the eccentricity excitation in
resonances, close encounters with planets, or the effects of
nongravitational forces. However, a few JTs exhibit large latitude
variations of the rotation pole and may even temporarily transition
between prograde- and retrograde-rotating categories.
Description:
Table B.1: Partial solutions: Rotation state properties and available
photometric data.
Table B.2: New shape solutions: Rotation state properties and available
photometric data.
Table B.3: DAMIT shape solutions: Rotation state properties.
Table B.4: The mean values and standard deviations of pole directions
within the bootstrapped solutions.
Table B.5: Optical disk-integrated data used for the shape modeling.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tableb1.dat 70 31 Partial solutions: Rotation state properties
and available photometric data
tableb2.dat 85 94 New shape solutions: Rotation state properties
and available photometric data
tableb3.dat 45 11 DAMIT shape solutions: Rotation state properties
tableb4.dat 49 79 The mean values and standard deviations of pole
directions within the bootstrapped solutions
tableb5.dat 95 1042 Optical disk-integrated data used for the
shape modeling
refs.dat 75 39 References
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- Number Asteroid number
8- 17 A10 --- Name Asteroid name/designation
19- 21 I3 deg betaP Ecliptic latitude betaP
23- 24 I2 deg deltaBetaP 1/2 of the range in latitude within the
multiple pole solutions
26- 35 F10.5 h P Sidereal rotation period
36- 37 A2 --- Camp Clan membership (L4 or L5)
39- 40 I2 --- NLC ? Number of dense lightcurves
42 I1 --- Napp ? Number of apparitions
44 I1 --- NUSNO ? Number of measurements in USNO dataset
46- 48 I3 --- NCSS Number of measurements in CSS dataset
50- 51 I2 --- NGAIA Number of measurements in GAIA dataset
53- 54 I2 --- NASAS ? Number of measurements in ASAS dataset
56- 58 I3 --- NATLAS ? Number of measurements in ATLAS dataset
60- 62 I3 --- NZTF ? Number of measurements in ZTF dataset
64- 66 I3 --- NPTF ? Number of measurements in PTF dataset
68- 70 I3 --- NTESS ? Number of measurements in TESS dataset
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- Number Asteroid number
8- 18 A11 --- Name Asteroid name/designation
20- 21 I2 deg lambda1 ? Ecliptic longitude lambda1
23- 25 I3 deg beta1 Ecliptic latitude beta1
27- 29 I3 deg lambda2 ? Ecliptic longitude lambda2
31- 33 I3 deg beta2 ? Ecliptic latitude beta2
35- 44 F10.6 h P Sidereal rotation period
46- 47 A2 --- Camp Clan membership (L4 or L5)
49- 50 I2 --- NLC ? Number of dense lightcurves
52- 53 I2 --- Napp ? Number of apparitions
55- 57 I3 --- NUSNO ? Number of measurements in USNO dataset
59- 61 I3 --- NCSS ? Number of measurements in CSS dataset
63- 64 I2 --- NGAIA ? Number of measurements in GAIA dataset
66- 68 I3 --- NASAS ? Number of measurements in ASAS dataset
70- 72 I3 --- NATLAS ? Number of measurements in ATLAS dataset
74- 76 I3 --- NZTF ? Number of measurements in ZTF dataset
78- 80 I3 --- NPTF ? Number of measurements in PTF dataset
82- 85 I4 --- NTESS ? Number of measurements in TESS dataset
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- Number Asteroid number
8- 16 A9 --- Name Asteroid name/designation
18- 20 I3 deg lambda1 Ecliptic longitude lambda1
22- 24 I3 deg beta1 Ecliptic latitude beta1
26- 28 I3 deg lambda2 ? Ecliptic longitude lambda2
30- 32 I3 deg beta2 ? Ecliptic latitude beta2
34- 42 F9.5 h P Sidereal rotation period
44- 45 A2 --- Camp Clan membership (L4 or L5)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- Number Asteroid number
8- 12 F5.1 deg lambdab1 Ecliptic longitude lambda b1
14- 17 F4.1 deg e_lambdab1 Uncertainty of lambdab1
19- 23 F5.1 deg betab1 Ecliptic latitude beta b1
25- 27 F3.1 deg e_betab1 Uncertainty of betab1
29- 33 F5.1 deg lambdab2 ? Ecliptic longitude lambda b2
35- 38 F4.1 deg e_lambdab2 ? Uncertainty of lambdab2
40- 44 F5.1 deg betab2 ? Ecliptic latitude beta b2
46- 49 F4.1 deg e_betab2 ? Uncertainty of betab2
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 18 A18 --- Name Asteroid name/designation
20- 31 A12 --- Epoch Day of the observation
34- 36 I3 --- Np Number of individual measurements
39- 42 F4.2 AU Delta ?=- Asteroid's distances to the Earth
46- 49 F4.2 AU r ?=- Asteroid's distances to the Sun
52- 55 F4.1 deg varphi ?=- Phase angle
60- 62 A3 --- Filter Photometric filter
66- 95 A30 --- Ref Reference to the data, in refs.dat file
--------------------------------------------------------------------------------
Byte-by-byte Description of file: refs.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 14 A14 --- Ref Referecne code
16- 37 A22 --- Aut Author's name
39- 75 A37 --- Refer Reference
--------------------------------------------------------------------------------
Acknowledgements:
Josef Hanus, pepa(at)sirrah.troja.mff.cuni.cz,
Institute of Astronomy, Charles University, Czech Republic
(End) J. Hanus [Inst. Astron., Czech Republic], P. Vannier [CDS] 30-Oct-2023