J/A+A/679/A56     Shape models and spin states of Jupiter Trojans (Hanus+, 2023)

Shape models and spin states of Jupiter Trojans. Testing the streaming instability formation scenario. Hanus J., Vokrouhlicky D., Nesvorny D., Durech J., Stephens R., Benishek V., Oey J., Pokorny P. <Astron. Astrophys. 679, A56 (2023)> =2023A&A...679A..56H 2023A&A...679A..56H (SIMBAD/NED BibCode)
ADC_Keywords: Solar system ; Minor planets ; Photometry, CCD Keywords: minor planets, asteroids: individual: Jupiter Trojans - surveys - methods: observational - methods: data analysis Abstract: The leading theory for the origin of Jupiter Trojans (JTs) assumes that JTs were captured to their orbits near the Lagrangian points of Jupiter during the early reconfiguration of the giant planets. The natural source region for the majority of JTs would then be the population of planetesimals born in a massive trans-Neptunian disk. If true, JTs represent the most accessible stable population of small Solar System bodies that formed in the outer regions of the Solar System. For this work, we compiled photometric datasets for about 1000 JTs and applied the convex inversion technique in order to assess their shapes and spin states. We obtained full solutions for 79 JTs, and partial solutions for an additional 31 JTs. We found that the observed distribution of the pole obliquities of JTs is broadly consistent with expectations from the streaming instability, which is the leading mechanism for the formation of planetesimals in the trans-Neptunian disk. The observed JTs' pole distribution has a slightly smaller prograde vs. retrograde asymmetry (excess of obliquities > 130 deg) than what is expected from the existing streaming instability simulations. However, this discrepancy can be plausibly reconciled by the effects of the post-formation collisional activity. Our numerical simulations of the post-capture spin evolution indicate that the JTs' pole distribution is not significantly affected by dynamical processes such as the eccentricity excitation in resonances, close encounters with planets, or the effects of nongravitational forces. However, a few JTs exhibit large latitude variations of the rotation pole and may even temporarily transition between prograde- and retrograde-rotating categories. Description: Table B.1: Partial solutions: Rotation state properties and available photometric data. Table B.2: New shape solutions: Rotation state properties and available photometric data. Table B.3: DAMIT shape solutions: Rotation state properties. Table B.4: The mean values and standard deviations of pole directions within the bootstrapped solutions. Table B.5: Optical disk-integrated data used for the shape modeling. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tableb1.dat 70 31 Partial solutions: Rotation state properties and available photometric data tableb2.dat 85 94 New shape solutions: Rotation state properties and available photometric data tableb3.dat 45 11 DAMIT shape solutions: Rotation state properties tableb4.dat 49 79 The mean values and standard deviations of pole directions within the bootstrapped solutions tableb5.dat 95 1042 Optical disk-integrated data used for the shape modeling refs.dat 75 39 References -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 I6 --- Number Asteroid number 8- 17 A10 --- Name Asteroid name/designation 19- 21 I3 deg betaP Ecliptic latitude betaP 23- 24 I2 deg deltaBetaP 1/2 of the range in latitude within the multiple pole solutions 26- 35 F10.5 h P Sidereal rotation period 36- 37 A2 --- Camp Clan membership (L4 or L5) 39- 40 I2 --- NLC ? Number of dense lightcurves 42 I1 --- Napp ? Number of apparitions 44 I1 --- NUSNO ? Number of measurements in USNO dataset 46- 48 I3 --- NCSS Number of measurements in CSS dataset 50- 51 I2 --- NGAIA Number of measurements in GAIA dataset 53- 54 I2 --- NASAS ? Number of measurements in ASAS dataset 56- 58 I3 --- NATLAS ? Number of measurements in ATLAS dataset 60- 62 I3 --- NZTF ? Number of measurements in ZTF dataset 64- 66 I3 --- NPTF ? Number of measurements in PTF dataset 68- 70 I3 --- NTESS ? Number of measurements in TESS dataset -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 I6 --- Number Asteroid number 8- 18 A11 --- Name Asteroid name/designation 20- 21 I2 deg lambda1 ? Ecliptic longitude lambda1 23- 25 I3 deg beta1 Ecliptic latitude beta1 27- 29 I3 deg lambda2 ? Ecliptic longitude lambda2 31- 33 I3 deg beta2 ? Ecliptic latitude beta2 35- 44 F10.6 h P Sidereal rotation period 46- 47 A2 --- Camp Clan membership (L4 or L5) 49- 50 I2 --- NLC ? Number of dense lightcurves 52- 53 I2 --- Napp ? Number of apparitions 55- 57 I3 --- NUSNO ? Number of measurements in USNO dataset 59- 61 I3 --- NCSS ? Number of measurements in CSS dataset 63- 64 I2 --- NGAIA ? Number of measurements in GAIA dataset 66- 68 I3 --- NASAS ? Number of measurements in ASAS dataset 70- 72 I3 --- NATLAS ? Number of measurements in ATLAS dataset 74- 76 I3 --- NZTF ? Number of measurements in ZTF dataset 78- 80 I3 --- NPTF ? Number of measurements in PTF dataset 82- 85 I4 --- NTESS ? Number of measurements in TESS dataset -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 I6 --- Number Asteroid number 8- 16 A9 --- Name Asteroid name/designation 18- 20 I3 deg lambda1 Ecliptic longitude lambda1 22- 24 I3 deg beta1 Ecliptic latitude beta1 26- 28 I3 deg lambda2 ? Ecliptic longitude lambda2 30- 32 I3 deg beta2 ? Ecliptic latitude beta2 34- 42 F9.5 h P Sidereal rotation period 44- 45 A2 --- Camp Clan membership (L4 or L5) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 I6 --- Number Asteroid number 8- 12 F5.1 deg lambdab1 Ecliptic longitude lambda b1 14- 17 F4.1 deg e_lambdab1 Uncertainty of lambdab1 19- 23 F5.1 deg betab1 Ecliptic latitude beta b1 25- 27 F3.1 deg e_betab1 Uncertainty of betab1 29- 33 F5.1 deg lambdab2 ? Ecliptic longitude lambda b2 35- 38 F4.1 deg e_lambdab2 ? Uncertainty of lambdab2 40- 44 F5.1 deg betab2 ? Ecliptic latitude beta b2 46- 49 F4.1 deg e_betab2 ? Uncertainty of betab2 -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 18 A18 --- Name Asteroid name/designation 20- 31 A12 --- Epoch Day of the observation 34- 36 I3 --- Np Number of individual measurements 39- 42 F4.2 AU Delta ?=- Asteroid's distances to the Earth 46- 49 F4.2 AU r ?=- Asteroid's distances to the Sun 52- 55 F4.1 deg varphi ?=- Phase angle 60- 62 A3 --- Filter Photometric filter 66- 95 A30 --- Ref Reference to the data, in refs.dat file -------------------------------------------------------------------------------- Byte-by-byte Description of file: refs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- Ref Referecne code 16- 37 A22 --- Aut Author's name 39- 75 A37 --- Refer Reference -------------------------------------------------------------------------------- Acknowledgements: Josef Hanus, pepa(at)sirrah.troja.mff.cuni.cz, Institute of Astronomy, Charles University, Czech Republic
(End) J. Hanus [Inst. Astron., Czech Republic], P. Vannier [CDS] 30-Oct-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line