J/A+A/679/A60 Properties of slowly rotating asteroids (Marciniak+ 2023)
Scaling slowly rotating asteroids by stellar occultations.
Marciniak A., Durech J., Choukroun A., Hanus J., Ogloza W., Szakats R.,
Molnar L., Pal A., Monteiro F., Frappa E., Beisker W., Pavlov H., Moore J.,
Adomaviciene R., Aikawa R., Andersson S., Antonini P., Argentin Y.,
Asai A., Assoignon P., Barton J., Baruffetti P., Bath K.L., Behrend R.,
Benedyktowicz L., Bernasconi L., Biguet G., Billiani M., Blazewicz D.,
Boninsegna R., Borkowski M., Bosch J., Brazill S., Bronikowska M., Bruno A.,
Butkiewicz-Bak M., Caron J., Casalnuovo G., Castellani J.J., Ceravolo P.,
Conjat M., Delincak P., Delpau J., Demeautis C., Demirkol A., Drozdz M.,
Duffard R., Durandet C., Eisfeldt D., Evangelista M., Fauvaud S.,
Fauvaud M., Ferrais M., Filipek M., Fini P., Fukui K., Gahrken B., Geier S.,
George T., Goffin B., Golonka J., Goto T., Grice J., Guhl K., Halir K.,
Hanna W., Harman M., Hashimoto A., Hasubick W., Higgins D., Higuchi M.,
Hirose T., Hirsch R., Hofschulz O., Horaguchi T., Horbowicz J., Ida M.,
Ignacz B., Ishida M., Isobe K., Jehin E., Joachimczyk B., Jones A., Juan J.,
Kaminski K., Kaminska M.K., Kankiewicz P., Kasebe H., Kattentidt B.,
Kim D.-H., Kim M.-J., Kitazaki K., Klotz A., Komraus M., Konstanciak I.,
Konyves - Toth R., Kouno K., Kowald E., Krajewski J., Krannich G.,
Kreutzer A., Kryszczynska A., Kubanek J., Kudak V., Kugel F., Kukita R.,
Kulczak P., Lazzaro D., Licandro J., Livet F., Maley P., Manago N.,
Manek J., Manna A., Matsushita H., Meister S., Mesquita W., Messner S.,
Michelet J., Michimani J., Mieczkowska I., Morales N., Motylinski M.,
Murawiecka M., Newman J., Nikitin V., Nishimura M., Oey J., Oszkiewicz D.,
Owada M., Pakstiene E., Pawlowski M., Pereira W., Perig V., Perla J.,
Pilcher F., Podlewska-Gaca E., Polak J., Polakis T., Polinska M.,
Popowicz A., Richard F., Rives J.J., Rodrigues T., Roginski L., Rondon E.,
Rottenborn M., Schafer R., Schnabel C., Schreurs O., Selva A., Simon M.,
Skiff B., Skrutskie M., Skrzypek J., Sobkowiak K., Sonbas E., Sposetti S.,
Stuart P., Szyszka K., Terakubo K., Thomas W., Trela P., Uchiyama S.,
Urbanik M., Vaudescal G., Venable R., Watanabe Ha., Watanabe Hi.,
Winiarski M., Wroblewski R., Yamamura H., Yamashita M., Yoshihara H.,
Zawilski M., Zeleny P., Zejmo M., Zukowski K., Zywica S.
<Astron. Astrophys. 679, A60 (2023)>
=2023A&A...679A..60M 2023A&A...679A..60M (SIMBAD/NED BibCode)
ADC_Keywords: Solar system ; Minor planets ; Photometry ; Optical
Keywords: minor planets: asteroids - techniques: photometric - occultations
Abstract:
As evidenced by recent survey results, the majority of asteroids are
slow rotators (spin periods longer than 12h), but lack spin and shape
models because of selection bias. This bias is skewing our overall
understanding of the spins, shapes, and sizes of asteroids, as well as
of their other properties. Also, diameter determinations for large
(>60km) and medium-sized asteroids (between 30 and 60km) often vary
by over 30% for multiple reasons.
Our long-term project is focused on a few tens of slow rotators with
periods of up to 60 h. We aim to obtain their full light curves and
reconstruct their spins and shapes. We also precisely scale the
models, typically with an accuracy of a few percent.
We used wide sets of dense light curves for spin and shape
reconstructions via light-curve inversion. Precisely scaling them with
thermal data was not possible here because of poor infrared datasets:
large bodies tend to saturate in WISE mission detectors. Therefore, we
recently also launched a special campaign among stellar occultation
observers, both in order to scale these models and to verify the shape
solutions, often allowing us to break the mirror pole ambiguity.
The presented scheme resulted in shape models for 16 slow rotators,
most of them for the first time. Fitting them to chords from stellar
occultation timings resolved previous inconsistencies in size
determinations. For around half of the targets, this fitting also
allowed us to identify a clearly preferred pole solution from the pair
of two mirror pole solutions, thus removing the ambiguity inherent to
light-curve inversion. We also address the influence of the
uncertainty of the shape models on the derived diameters.
Overall, our project has already provided reliable models for around
50 slow rotators. Such well-determined and scaled asteroid shapes
will, for example, constitute a solid basis for precise density
determinations when coupled with mass information. Spin and shape
models in general continue to fill the gaps caused by various biases.
Description:
The files contain asteroid brightness and geometry for corresponding
epochs. The "*lcs.dat" files were used for obtaining shape models and
spin states of the asteroids using multi-apparition data. Individual
lightcurves within a file are separated by an empty line, all
lightcurves are relative.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 144 19 Spin parameters and sizes of asteroid models
obtained in this work
70lcs.dat 112 3717 Asteroid 70 Panopaea individual lightcurves
275lcs.dat 112 1931 Asteroid 275 Sapientia individual lightcurves
286lcs.dat 112 1619 Asteroid 286 Iclea individual lightcurves
326lcs.dat 112 2448 Asteroid 326 Tamara individual lightcurves
412lcs.dat 112 4129 Asteroid 412 Elisabetha individual lightcurves
426lcs.dat 112 4514 Asteroid 426 Hippo individual lightcurves
439lcs.dat 112 2516 Asteroid 439 Ohio individual lightcurves
464lcs.dat 112 1852 Asteroid 464 Megaira individual lightcurves
476lcs.dat 112 2209 Asteroid 476 Hedwig individual lightcurves
524lcs.dat 112 1738 Asteroid 524 Fidelio individual lightcurves
530lcs.dat 112 2742 Asteroid 530 Turandot individual lightcurves
551lcs.dat 112 5839 Asteroid 551 Ortrud individual lightcurves
566lcs.dat 112 1690 Asteroid 566 Stereoskopia individual lightcurves
657lcs.dat 112 3224 Asteroid 657 Gunlod individual lightcurves
738lcs.dat 112 1211 Asteroid 738 Alagasta individual lightcurves
806lcs.dat 112 2366 Asteroid 806 Gyldenia individual lightcurves
--------------------------------------------------------------------------------
See also:
B/astorb : Orbits of Minor Planets (Bowell+ 2014)
J/A+A/654/A87 : Properties of slowly rotating asteroids (Marciniak+ 2021)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 18 A18 --- Asteroid Asteroid name
19- 24 A6 --- Method Method
26- 28 I3 deg lambdap Pole ecliptic longitude (J2000)
30- 31 I2 deg e_lambdap Pole ecliptic longitude error
33- 35 I3 deg betap Pole ecliptic latitude (J2000)
37- 38 I2 deg e_betap Pole ecliptic latitude error
40- 48 F9.6 h P Pole sidereal rotation period
50- 57 F8.6 h e_P Pole sidereal rotation period error
59- 67 A9 yr Obs-span Observing span in calendar years
69- 70 I2 --- Napp Number of apparitions
72- 74 I3 --- Nlc Number of light curves
76- 78 I3 km D Pole Pole volume equivalent diameter
80- 81 I2 km E_D Pole Error on D (upper value)
83- 84 I2 km e_D Pole Error on D (lower value)
86- 87 I2 km DRMS ?=- Pole RMS residual from the stellar
occultation fitting
89- 91 I3 deg lambdapm ?=- Mirror pole ecliptic longitude (J2000)
93- 94 I2 deg e_lambdapm ? Mirror pole ecliptic longitude error
96- 98 I3 deg betapm ?=- Mirror pole ecliptic latitude (J2000)
100-101 I2 deg e_betapm ? Mirror pole ecliptic latitude error
103-111 F9.6 h Pm ?=- Mirror pole Sidereal rotation period
113-120 F8.6 h e_Pm ? Mirror pole Sidereal rotation period error
122-124 I3 km Dm ?=- Mirror pole volume equivalent diameter
126-127 I2 km E_Dm ? Error on Dm (upper value)
129-130 I2 km e_Dm ? Error on Dm (lower value)
132-133 I2 km DRMSm ?=- Mirror pole RMS residual from the
stellar occultation fitting
135-144 A10 --- FileName Name of the file with light curve data
--------------------------------------------------------------------------------
Byte-by-byte Description of file: *lcs.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
2- 15 F14.6 d JD JD epoch corrected for the light-time
corresponding to the Earth-asteroid distance
17- 28 E12.6 --- br Relative brightness in intensity units,
mean brightness of each lightcurve is unity
30- 42 E13.6 AU Sx x component of the vector from the asteroid to
the Sun in J2000 ecliptic Cartesian coordinates
44- 56 E13.6 AU Sy y component of the vector from the asteroid to
the Sun in J2000 ecliptic Cartesian coordinates
58- 70 E13.6 AU Sz z component of the vector from the asteroid to
the Sun in J2000 ecliptic Cartesian coordinates
72- 84 E13.6 AU Ex x component of the vector from the asteroid to
the Earth in J2000 ecliptic Cartesian coordinates
86- 98 E13.6 AU Ey y component of the vector from the asteroid to
the Earth in J2000 ecliptic Cartesian coordinates
100-112 E13.6 AU Ez z component of the vector from the asteroid to
the Earth in J2000 ecliptic Cartesian coordinates
--------------------------------------------------------------------------------
Acknowledgements:
Anna Marciniak, am(at)amu.edu.pl
(End) Patricia Vannier [CDS] 31-Aug-2023