J/A+A/679/A60        Properties of slowly rotating asteroids   (Marciniak+ 2023)

Scaling slowly rotating asteroids by stellar occultations. Marciniak A., Durech J., Choukroun A., Hanus J., Ogloza W., Szakats R., Molnar L., Pal A., Monteiro F., Frappa E., Beisker W., Pavlov H., Moore J., Adomaviciene R., Aikawa R., Andersson S., Antonini P., Argentin Y., Asai A., Assoignon P., Barton J., Baruffetti P., Bath K.L., Behrend R., Benedyktowicz L., Bernasconi L., Biguet G., Billiani M., Blazewicz D., Boninsegna R., Borkowski M., Bosch J., Brazill S., Bronikowska M., Bruno A., Butkiewicz-Bak M., Caron J., Casalnuovo G., Castellani J.J., Ceravolo P., Conjat M., Delincak P., Delpau J., Demeautis C., Demirkol A., Drozdz M., Duffard R., Durandet C., Eisfeldt D., Evangelista M., Fauvaud S., Fauvaud M., Ferrais M., Filipek M., Fini P., Fukui K., Gahrken B., Geier S., George T., Goffin B., Golonka J., Goto T., Grice J., Guhl K., Halir K., Hanna W., Harman M., Hashimoto A., Hasubick W., Higgins D., Higuchi M., Hirose T., Hirsch R., Hofschulz O., Horaguchi T., Horbowicz J., Ida M., Ignacz B., Ishida M., Isobe K., Jehin E., Joachimczyk B., Jones A., Juan J., Kaminski K., Kaminska M.K., Kankiewicz P., Kasebe H., Kattentidt B., Kim D.-H., Kim M.-J., Kitazaki K., Klotz A., Komraus M., Konstanciak I., Konyves - Toth R., Kouno K., Kowald E., Krajewski J., Krannich G., Kreutzer A., Kryszczynska A., Kubanek J., Kudak V., Kugel F., Kukita R., Kulczak P., Lazzaro D., Licandro J., Livet F., Maley P., Manago N., Manek J., Manna A., Matsushita H., Meister S., Mesquita W., Messner S., Michelet J., Michimani J., Mieczkowska I., Morales N., Motylinski M., Murawiecka M., Newman J., Nikitin V., Nishimura M., Oey J., Oszkiewicz D., Owada M., Pakstiene E., Pawlowski M., Pereira W., Perig V., Perla J., Pilcher F., Podlewska-Gaca E., Polak J., Polakis T., Polinska M., Popowicz A., Richard F., Rives J.J., Rodrigues T., Roginski L., Rondon E., Rottenborn M., Schafer R., Schnabel C., Schreurs O., Selva A., Simon M., Skiff B., Skrutskie M., Skrzypek J., Sobkowiak K., Sonbas E., Sposetti S., Stuart P., Szyszka K., Terakubo K., Thomas W., Trela P., Uchiyama S., Urbanik M., Vaudescal G., Venable R., Watanabe Ha., Watanabe Hi., Winiarski M., Wroblewski R., Yamamura H., Yamashita M., Yoshihara H., Zawilski M., Zeleny P., Zejmo M., Zukowski K., Zywica S. <Astron. Astrophys. 679, A60 (2023)> =2023A&A...679A..60M 2023A&A...679A..60M (SIMBAD/NED BibCode)
ADC_Keywords: Solar system ; Minor planets ; Photometry ; Optical Keywords: minor planets: asteroids - techniques: photometric - occultations Abstract: As evidenced by recent survey results, the majority of asteroids are slow rotators (spin periods longer than 12h), but lack spin and shape models because of selection bias. This bias is skewing our overall understanding of the spins, shapes, and sizes of asteroids, as well as of their other properties. Also, diameter determinations for large (>60km) and medium-sized asteroids (between 30 and 60km) often vary by over 30% for multiple reasons. Our long-term project is focused on a few tens of slow rotators with periods of up to 60 h. We aim to obtain their full light curves and reconstruct their spins and shapes. We also precisely scale the models, typically with an accuracy of a few percent. We used wide sets of dense light curves for spin and shape reconstructions via light-curve inversion. Precisely scaling them with thermal data was not possible here because of poor infrared datasets: large bodies tend to saturate in WISE mission detectors. Therefore, we recently also launched a special campaign among stellar occultation observers, both in order to scale these models and to verify the shape solutions, often allowing us to break the mirror pole ambiguity. The presented scheme resulted in shape models for 16 slow rotators, most of them for the first time. Fitting them to chords from stellar occultation timings resolved previous inconsistencies in size determinations. For around half of the targets, this fitting also allowed us to identify a clearly preferred pole solution from the pair of two mirror pole solutions, thus removing the ambiguity inherent to light-curve inversion. We also address the influence of the uncertainty of the shape models on the derived diameters. Overall, our project has already provided reliable models for around 50 slow rotators. Such well-determined and scaled asteroid shapes will, for example, constitute a solid basis for precise density determinations when coupled with mass information. Spin and shape models in general continue to fill the gaps caused by various biases. Description: The files contain asteroid brightness and geometry for corresponding epochs. The "*lcs.dat" files were used for obtaining shape models and spin states of the asteroids using multi-apparition data. Individual lightcurves within a file are separated by an empty line, all lightcurves are relative. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 144 19 Spin parameters and sizes of asteroid models obtained in this work 70lcs.dat 112 3717 Asteroid 70 Panopaea individual lightcurves 275lcs.dat 112 1931 Asteroid 275 Sapientia individual lightcurves 286lcs.dat 112 1619 Asteroid 286 Iclea individual lightcurves 326lcs.dat 112 2448 Asteroid 326 Tamara individual lightcurves 412lcs.dat 112 4129 Asteroid 412 Elisabetha individual lightcurves 426lcs.dat 112 4514 Asteroid 426 Hippo individual lightcurves 439lcs.dat 112 2516 Asteroid 439 Ohio individual lightcurves 464lcs.dat 112 1852 Asteroid 464 Megaira individual lightcurves 476lcs.dat 112 2209 Asteroid 476 Hedwig individual lightcurves 524lcs.dat 112 1738 Asteroid 524 Fidelio individual lightcurves 530lcs.dat 112 2742 Asteroid 530 Turandot individual lightcurves 551lcs.dat 112 5839 Asteroid 551 Ortrud individual lightcurves 566lcs.dat 112 1690 Asteroid 566 Stereoskopia individual lightcurves 657lcs.dat 112 3224 Asteroid 657 Gunlod individual lightcurves 738lcs.dat 112 1211 Asteroid 738 Alagasta individual lightcurves 806lcs.dat 112 2366 Asteroid 806 Gyldenia individual lightcurves -------------------------------------------------------------------------------- See also: B/astorb : Orbits of Minor Planets (Bowell+ 2014) J/A+A/654/A87 : Properties of slowly rotating asteroids (Marciniak+ 2021) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 18 A18 --- Asteroid Asteroid name 19- 24 A6 --- Method Method 26- 28 I3 deg lambdap Pole ecliptic longitude (J2000) 30- 31 I2 deg e_lambdap Pole ecliptic longitude error 33- 35 I3 deg betap Pole ecliptic latitude (J2000) 37- 38 I2 deg e_betap Pole ecliptic latitude error 40- 48 F9.6 h P Pole sidereal rotation period 50- 57 F8.6 h e_P Pole sidereal rotation period error 59- 67 A9 yr Obs-span Observing span in calendar years 69- 70 I2 --- Napp Number of apparitions 72- 74 I3 --- Nlc Number of light curves 76- 78 I3 km D Pole Pole volume equivalent diameter 80- 81 I2 km E_D Pole Error on D (upper value) 83- 84 I2 km e_D Pole Error on D (lower value) 86- 87 I2 km DRMS ?=- Pole RMS residual from the stellar occultation fitting 89- 91 I3 deg lambdapm ?=- Mirror pole ecliptic longitude (J2000) 93- 94 I2 deg e_lambdapm ? Mirror pole ecliptic longitude error 96- 98 I3 deg betapm ?=- Mirror pole ecliptic latitude (J2000) 100-101 I2 deg e_betapm ? Mirror pole ecliptic latitude error 103-111 F9.6 h Pm ?=- Mirror pole Sidereal rotation period 113-120 F8.6 h e_Pm ? Mirror pole Sidereal rotation period error 122-124 I3 km Dm ?=- Mirror pole volume equivalent diameter 126-127 I2 km E_Dm ? Error on Dm (upper value) 129-130 I2 km e_Dm ? Error on Dm (lower value) 132-133 I2 km DRMSm ?=- Mirror pole RMS residual from the stellar occultation fitting 135-144 A10 --- FileName Name of the file with light curve data -------------------------------------------------------------------------------- Byte-by-byte Description of file: *lcs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2- 15 F14.6 d JD JD epoch corrected for the light-time corresponding to the Earth-asteroid distance 17- 28 E12.6 --- br Relative brightness in intensity units, mean brightness of each lightcurve is unity 30- 42 E13.6 AU Sx x component of the vector from the asteroid to the Sun in J2000 ecliptic Cartesian coordinates 44- 56 E13.6 AU Sy y component of the vector from the asteroid to the Sun in J2000 ecliptic Cartesian coordinates 58- 70 E13.6 AU Sz z component of the vector from the asteroid to the Sun in J2000 ecliptic Cartesian coordinates 72- 84 E13.6 AU Ex x component of the vector from the asteroid to the Earth in J2000 ecliptic Cartesian coordinates 86- 98 E13.6 AU Ey y component of the vector from the asteroid to the Earth in J2000 ecliptic Cartesian coordinates 100-112 E13.6 AU Ez z component of the vector from the asteroid to the Earth in J2000 ecliptic Cartesian coordinates -------------------------------------------------------------------------------- Acknowledgements: Anna Marciniak, am(at)amu.edu.pl
(End) Patricia Vannier [CDS] 31-Aug-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line