J/A+A/679/A80 NIR lines for AGN up to z∼3 (Calabro+, 2023)
Near-infrared emission line diagnostics for AGN from the local Universe to z∼3.
Calabro A., Pentericci L., Feltre A., Arrabal Haro P., Radovich M.,
Seille L.M., Oliva E., Daddi E., Amorin R., Bagley M.B., Bisigello L.,
Buat V., Castellano M., Cleri N., Dickinson M., Fernandez V.,
Finkelstein S., Giavalisco M., Grazian A., Hathi N., Hirschmann M.,
Juneau S., Kartaltepe J.S., Koekemoer A., Lucas R.A., Papovich C.,
Perez-Gonzalez P., Pirzkal N., Santini P., Trump J., de la Vega A.,
Wilkins S., Yung L.Y.A., Cassata P., Gobat R.A.S., Mascia S., Napolitano L.,
Vulcani B.
<Astron. Astrophys. 679, A80 (2023)>
=2023A&A...679A..80C 2023A&A...679A..80C (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, Seyfert ; Galaxies, spectra ; Spectra, infrared ;
Spectroscopy ; Active gal. nuclei
Keywords: ISM: galaxies - galaxies: high-redshift - galaxies: evolution -
galaxies: Seyfert - galaxies: active
Abstract:
Optical rest-frame spectroscopic diagnostics are usually employed to
distinguish between star formation and active galactic nucleus (AGN)
powered emission. However, this method is biased against dusty
sources, hampering a complete census of the AGN population across
cosmic epochs. To mitigate th is effect, it is crucial to observe at
longer wavelengths in the rest-frame near-infrared (near-IR), which is
less affected by dust attenuation and can thus provide a better
description of the intrinsic properties of galaxies. AGN diagnostics
in this regime have not been fully exploited so far, due to the
scarcity of near-IR observations of both AGNs and star-forming
galaxies, especially at redshifts higher than 0.5. Using Cloudy
photoionization models, we identified new AGN - star formation
diagnostics based on the ratio of bright near-IR emission lines,
namely [SIII] 9530Å, [CI] 9850Å, [PII] 1.188 micron,
[FeII] 1.257 micron, and [FeII] 1.64 micron to Paschen lines (either
Paγ or Paβ), providing simple, analytical classification
criteria. We applied these diagnostics to a sample of 64 star-forming
galaxies and AGNs at 0<z<1, and 65 sources at 1<z<3 recently
observed with JWST-NIRSpec in CEERS. We find that the classification
inferred from the near-IR is broadly consistent with the optical one
based on the BPT and the [SII]/H-alpha ratio. However, in the near-IR,
we find ∼60% more AGNs than in the optical (13 instead of eight),
with five sources classified as "hidden" AGNs, showing a larger AGN
contribution at longer wavelengths, possibly due to the presence of
optically thick dust. The diagnostics we present provide a promising
tool to find and characterize AGNs from z=0 to z∼3 with low- and
medium-resolution near-IR spectrographs in future surveys.
Description:
Measurements of emission lines from fully calibrated spectra observed
with JWST/NIRSpec in M-grating mode (R=1000) for 90 emission line
galaxies in CEERS in the redshift range 1<z<3. The emission lines are
modeled as Gaussians and fitted with MPFIT (Markwardt et al., 2009,
Astronomical Data Analysis Software and Systems XVIII, 411, 251
doi:10.48550/arXiv.0902.2850) following the procedure explained in
Section 2.2 of the paper. The spectroscopic redshift zspec and the
velocity width sigma of the lines are first determined from the
highest S/N emission line (typically Hα or [SIII] 9530.65Å).
and then fixed when fitting the remaining lines, with a tolerance of
500km/s and 100km/s, respectively. The Hβ+[OIII] line complex in
the optical is fitted simultaneously, that is, assuming a single
redshift, line velocity width, and underlying continuum in the form of
first order polynomial. The same approach is followed when fitting the
H-alpha + [NII] complex, the [SII] doublet, the HeI+Paγ
complex, and the [FeII]+Paβ complex. In this table we report the
results (including redshift, flux, flux uncertainty, underlying
continuum, and line width) for the emission lines ranging from Hβ
to Paα.
When upper limit flag (f in f_Flux) the flux of the corresponding
emission line should be treated as an upper limit at 1sigma. For the
broad line AGNs selected in the paper, the flux, redshift, and
velocity width of permitted lines always refer to the narrow
component.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
linesir.dat 443 90 Emission line measurements
--------------------------------------------------------------------------------
Byte-by-byte Description of file: linesir.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- ID [2422/40380] Galaxy Identification
Number in CEERS NIRSPEC-MSA
observations (ID)
7- 17 F11.7 deg RAdeg Right Ascension (J2000) (RA)
19- 28 F10.7 deg DEdeg Declination (J2000) (DEC)
30- 37 F8.5 --- zHb ?=-9 Redshift estimated from the
Hβ+OIII line complex (Hb_z)
39- 46 F8.3 10-22W/m2 FHb ?=-9 Hβ flux (Hb_flux)
47 A1 --- l_FHb [l] Limit flag on FHb (1)
48- 53 F6.3 10-22W/m2 e_FHb ?=-9 Hβ flux error (Hbfluxerr)
55- 60 F6.3 10-22W/m2 contHb ?=-9 Hβ underlying continuum flux
(Hb_cont)
62- 68 F7.3 km/s sigmaHb ?=-9 Hβ line velocity width sigma
(for the FWHM multiply by 2.355)
(Hb_sigmaV)
70- 77 F8.3 10-22W/m2 FOIII-5007 ?=-9 OIII 5007Å flux
(OIII5007flux)
78 A1 --- l_FOIII-5007 [l] Limit flag on FOIII-5007 (1)
79- 84 F6.3 10-22W/m2 e_FOIII-5007 ?=-9 OIII 5007Å flux error
(OIII5007flux_err)
86- 91 F6.3 10-22W/m2 contOIII-5007 ?=-9 OIII 5007Å underlying
continuum flux (OIII5007cont)
93- 99 F7.5 --- zHa Redshift estimated from the
Hα+[NII] 6583Å line complex
(Ha_z)
101-108 F8.3 10-22W/m2 FHa Hα flux (Ha_flux)
109 A1 --- l_FHa [l] Limit flag on FHa (1)
110-115 F6.3 10-22W/m2 e_FHa ?=-9 Hα flux error (Hafluxerr)
117-122 F6.3 10-22W/m2 contHa Hα underlying continuum flux
(Ha_cont)
124-130 F7.3 km/s sigmaHa Hα line velocity width sigma
(for the FWHM multiply by 2.355)
(Ha_sigmaV)
132-139 F8.3 10-22W/m2 FNII-6583 ?=-9 NII 6583Å flux
(NII6583flux)
140 A1 --- l_FNII-6583 [l] Limit flag on FNII-6583 (1)
141-146 F6.3 10-22W/m2 e_FNII-6583 ?=-9 NII 6583Å flux error
(NII6583flux_err)
148-153 F6.3 10-22W/m2 contNII6583 ?=-9 NII 6583Å underlying continuum
(NII6583cont)
155-162 F8.3 10-22W/m2 FSII ?=-9 SII 6719-6731Å flux
(SII_flux)
163 A1 --- l_FSII [l] Limit flag on FSII (1)
164-169 F6.3 10-22W/m2 e_FSII ?=-9 SII 6719-6731Å flux error
(SIIfluxerr)
171-176 F6.3 10-22W/m2 contSII ?=-9 SII 6719-6731Å underlying
continuum (SII_cont)
178-185 F8.5 --- zSIII-9531 ?=-9 Redshift estimated from the
[SIII]9531Å line (SIII9531z)
187-194 F8.3 10-22W/m2 FSIII-9531 ?=-9 SIII 9531Å flux
(SIII9531flux)
195 A1 --- l_FSIII-9531 [l] Limit flag on FSIII-9531 (1)
196-201 F6.3 10-22W/m2 e_FSIII-9531 ?=-9 SIII 9531Å flux error
(SIII9531flux_err)
203-208 F6.3 10-22W/m2 contSIII-9531 ?=-9 SIII 9531Å underlying
continuum flux (SIII9531cont)
210-216 F7.3 km/s sigmaSIII-9531 ?=-9 SIII 9531Å line velocity
width sigma (SIII9531sigmaV)
218-224 F7.3 10-22W/m2 FCI-9850 ?=-9 CI 9850Å flux
(CI9850flux)
225 A1 --- l_FCI-9850 [l] Limit flag on FCI-9850 (1)
226-231 F6.3 10-22W/m2 e_FCI-9850 ?=-9 CI 9850Å flux error
(CI9850flux_err)
233-238 F6.3 10-22W/m2 contCI-9850 ?=-9 CI 9850Å underlying
continuum flux (CI9850cont)
240-247 F8.5 --- zHeI-10830 ?=-9 Redshift estimated from
HeI10830+Paγ complex
(HeI10830z)
249-255 F7.3 10-22W/m2 FHeI-10830 ?=-9 HeI 10830Å flux
(HeI10830flux)
256 A1 --- l_FHeI-10830 [l] Limit flag on FHeI-10830 (1)
257-262 F6.3 10-22W/m2 e_FHeI-10830 ?=-9 HeI 10830Å flux error
(HeI10830flux_err)
264-269 F6.3 10-22W/m2 contHeI-10830 ?=-9 HeI 10830Å underlying
continuum flux (HeI10830cont)
271-277 F7.3 km/s sigmaHeI-10830 ?=-9 HeI 10830Å line velocity width
sigma (for the FWHM multiply by
2.355) (HeI10830sigmaV)
279-285 F7.3 10-22W/m2 FPaG ?=-9 Paγ flux (PaG_flux)
286 A1 --- l_FPaG [l] Limit flag on FPaG (1)
287-292 F6.3 10-22W/m2 e_FPaG ?=-9 Paγ flux error
(PaGfluxerr)
294-299 F6.3 10-22W/m2 contPaG ?=-9 Paγ underlying continuum
flux (PaG_cont)
301-306 F6.3 10-22W/m2 FPII-1188 ?=-9 PII 1.188 micron flux
(PII1188flux)
307 A1 --- l_FPII-1188 [l] Limit flag on FPII-1188 (1)
308-313 F6.3 10-22W/m2 e_FPII-1188 ?=-9 PII 1.188 micron flux error
(PII1188flux_err)
315-320 F6.3 10-22W/m2 contPII-1188 ?=-9 PII 1.188 micron underlying
continuum flux (PII1188cont)
322-328 F7.3 10-22W/m2 FFeII-1257 ?=-9 FeII 1.257 micron flux
(FeII1257flux)
329 A1 --- l_FFeII-1257 [l] Limit flag on FFeII-1257 (1)
330-335 F6.3 10-22W/m2 e_FFeII-1257 ?=-9 FeII 1.257 micron flux error
(FeII1257flux_err)
337-342 F6.3 10-22W/m2 contFeII-1257 ?=-9 FeII 1.257 micron underlying
continuum flux (FeII1257cont)
344-351 F8.5 --- zPaB ?=-9 Redshift estimated from the
Paβ+[FeII]1.257 complex (PaB_z)
353-359 F7.3 10-22W/m2 FPaB ?=-9 Paβ flux (PaB_flux)
360 A1 --- l_FPaB [l] Limit flag on FPaB (1)
361-366 F6.3 10-22W/m2 e_FPaB ?=-9 Paβ flux error
(PaBfluxerr)
368-373 F6.3 10-22W/m2 contPaB ?=-9 Paβ underlying continuum
flux (PaB_cont)
375-381 F7.3 km/s sigmaPaB ?=-9 Paβ line velocity width
sigma (for the FWHM multiply by
2.355) (PaB_sigmaV)
383-389 F7.3 10-22W/m2 FFeII-164 ?=-9 FeII 1.64 micron flux
(FeII164flux)
390 A1 --- l_FFeII-164 [l] Limit flag on FFeII-164 (1)
391-396 F6.3 10-22W/m2 e_FFeII-164 ?=-9 FeII 1.64 micron flux error
(FeII164flux_err)
398-403 F6.3 10-22W/m2 contFeII-164 ?=-9 FeII 1.64 micron underlying
continuum flux (FeII164cont)
405-412 F8.5 --- zPaA ?=-9 Redshift estimated from the
Paα line (PaA_z)
414-421 F8.3 10-22W/m2 FPaA ?=-9 Paα flux (PaA_flux)
422 A1 --- l_FPaA [l] Limit flag on FPaA (1)
423-428 F6.3 10-22W/m2 e_FPaA ?=-9 Paα flux error
(PaAfluxerr)
430-435 F6.3 10-22W/m2 contPaA ?=-9 Paα underlying continuum
flux (PaA_cont)
437-443 F7.3 km/s sigmaPaA ?=-9 Paα line velocity width
sigma (for the FWHM multiply by
2.355) (PaA_sigmaV)
--------------------------------------------------------------------------------
Note (1): When upper limit flag (l in f_Flux) the flux of the corresponding
emission line should be treated as an upper limit at 1sigma. For the broad
line AGNs selected in the paper, the flux, redshift, and velocity width of
permitted lines always refer to the narrow component.
--------------------------------------------------------------------------------
Acknowledgements:
Antonello Calabro, antonello.calabro(at)inaf.it
(End) Antonello Calabro [INAF-OAR, Italy], Patricia Vannier [CDS] 22-Sep-2023