J/A+A/682/A136          Activity indexes analysis                (Claudi+, 2024)

The GAPS Programme at TNG. LI. Investigating the correlations between transiting system parameters and host chromospheric activity. Claudi R., Bruno G., Fossati L., Lanza A.F., Maggio A., Micela G., Maldonado J., Benatti S., Biazzo K., Bignamini A., Cabona L., Carleo I., Danielski C., Desidera S., Malavolta L., Mancini L., Montalto M., Nardiello D., Rainer M., Scandariato G., Sozzetti A., Cosentino R., Covino E., Di Fabrizio L., Ghedina A., Lorenzi V., Molinari E., Molinaro M., Pagano I., Piotto G., Poretti E. <Astron. Astrophys., 682, A136 (2024)> =2024A&A...682A.136C 2024A&A...682A.136C (SIMBAD/NED BibCode)
ADC_Keywords: Stars, activity ; Stars, double and multiple ; Exoplanets ; Optical ; Effective temperatures Keywords: planets and satellites: fundamental parameters - planet-star interactions - stars: activity - planetary systems Abstract: Stellar activity is the most relevant types of astrophysical noise that affect the discovery and characterization of extrasolar planets. On the other hand, the amplitude of stellar activity could hint at an interaction between the star and a close-in giant planet. Progress has been made in recent years in understanding how to deal with stellar activity and search for observational evidence of star-planet interactions. The aim of this work is to characterize the chromospheric activity of stars hosting short-period exoplanets by studying the correlations between the chromospheric emission (CE) in the CaII H&K and the planetary parameters. We measured CE in the CaII H&K lines using more than 1900 high-resolution spectra of a sample composed of 76 targets, observed with the HARPS-N spectrograph between 2012 and 2020. We transformed the fluxes into bolometric- and photospheric-corrected chromospheric emission ratios, R'HK. Furthermore, we completed the sample of hosts digging for data in previous works. Stellar parameters Teff, B-V, and V were retrieved homogeneously from the Gaia DR3. Then, M*, R*, and ages were determined from isochrone fitting. We retrieved planetary data from the literature and catalogs. The search for correlations between the log(R'HK) and planetary parameters have been performed through both Spearman's rank and its statistics as well as the more sophisticated Gaussian mixture model method. We found that the distribution of log(R'HK) for the transiting planet hosts is different from the distribution of field main-sequence and sub-giant stars. The log(R'HK) of planetary hosts is correlated with planetary parameters proportional to the planetary radius to the power of n (RPn, indicating a common origin for the correlations. The statistical analysis has also highlighted four clusters of host stars with different behavior in terms of their stellar activity with respect to the planetary surface gravity. Some of the host stars have a value of log(R'HK) that is lower than the basal level of activity for main sequence stars. The planets of these systems are very close to filling their Roche lobe, suggesting that they evaporate through hydrodynamic escape under the strong irradiation of the host star, creating shrouds that absorb the core of the chromospheric resonance lines. Description: For each of the 131 stars in the sample, we obtained the stellar parameters (Teff, B-V, V in a homogeneous way, exploiting the Gaia DR3 data release, 2022, Cat. I/355). The S-index and the corresponding log(R'HK)N median values are reported for each object of the GAPS sample in Table 2. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 113 131 For all systems, the table lists Gaia DR3 id., and (B-V), and Teff obtained by Gaia Collaboration (2018A&A...616A...1G 2018A&A...616A...1G) as explained in the text -------------------------------------------------------------------------------- See also: I/355 : Gaia DR3 Part 1. Main source (Gaia Collaboration, 2022) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- System System name 11- 13 A3 --- n_System [abcd, ] Note on System (1) 16- 34 I19 --- GaiaDR3 Gaia DR3 identification number 36- 40 F5.3 mag B-V B-V oolour index 42- 46 F5.3 mag e_B-V ? B-V oolour index error 49- 52 I4 K Teff Effective temperature 54- 56 I3 K e_Teff Effective temperature error 58- 59 I2 --- r_Teff ? Effective temperature reference (3) 62- 66 F5.3 --- SMWO SMWO activity index 68- 72 F5.3 --- e_SMWO ? SMWO activity index error 74- 75 I2 --- r_SMWO ? SMWO activity index reference (3) 78- 84 F7.4 --- log(R'HK)N log(R'HK) activity index obtained with Noyes et al. (1984ApJ...279..763N 1984ApJ...279..763N) procedure (2) 86- 91 F6.4 --- e_log(R'HK)N ? log(R'HK) activity index obtained with Noyes et al. (1984ApJ...279..763N 1984ApJ...279..763N) procedure error 94-100 F7.4 --- log(R'HK)M log(R'HK) activity index obtained with Mittag et al. (2013A&A...549A.117M 2013A&A...549A.117M) procedure (2) 102-107 F6.4 --- e_log(R'HK)M ? log(R'HK) activity index obtained with Mittag et al. (2013A&A...549A.117M 2013A&A...549A.117M) procedure error 109-113 F5.3 10+5 rms ?=- rms of the several measured time series (R'HKx105rms) -------------------------------------------------------------------------------- Note (1): Notes as follows: a = The R-indices obtained with the relation of Mittag et al. (2013A&A...549A.117M 2013A&A...549A.117M) are derived in the color range of 0.44<B-V<1.6. Nevertheless, we give values for all the objects in our samples, and values for spectral types out of this color range should be taken with a pinch of salt. b = Also known as HD147506 c = Also known as WASP-40 d = Also known as HAT-P-10 Note (2): The CaII H&K line strength is listed for both the original GAPS sample and the sample obtained by literature. We report the classical value (Noyes et al., 1984ApJ...279..763N 1984ApJ...279..763N) of the activity as obtained in this work or in the literature in log(R'HK)N column while in the the values corrected with the Mittag et al. (2013A&A...549A.117M 2013A&A...549A.117M) procedure as described in Sect. 4.2 are reported in log(R'HK)M column. Note (3): References as follows: 1 = Wright et al. (2004AJ....128.1273W 2004AJ....128.1273W) 2 = Knutson et al. (2010ApJ...720.1569K 2010ApJ...720.1569K) 3 = Noyes et al. (2008ApJ...673L..79N 2008ApJ...673L..79N) 4 = Quinn et al. (2012ApJ...745...80Q 2012ApJ...745...80Q, Cat. J/ApJ/745/80) 5 = Beky et al. ( 2011ApJ...734..109B 2011ApJ...734..109B, Cat. J/ApJ/734/109) 6 = Buchhave et al. (2011ApJ...733..116B 2011ApJ...733..116B, Cat. J/ApJ/733/116) 7 = Hartman et al. (2011ApJ...742...59H 2011ApJ...742...59H, Cat. J/ApJ/742/59) 8 = Bakos et al. (2012AJ....144...19B 2012AJ....144...19B, Cat. J/AJ/144/19) 9 = Sato et al. (2012PASJ...64...97S 2012PASJ...64...97S) 10 = Hartman et al. (2012AJ....144..139H 2012AJ....144..139H, Cat. J/AJ/144/139) 11 = Hartman et al. (2014AJ....147..128H 2014AJ....147..128H, Cat. J/AJ/147/128) 12 = Howard et al. (2011ApJ...730...10H 2011ApJ...730...10H) 13 = Dumusque et al. (2014ApJ...789..154D 2014ApJ...789..154D, Cat. J/ApJ/789/154) 14 = Winn et al. (2011ApJ...741L...1W 2011ApJ...741L...1W) 15 = Bonomo et al. (2012A&A...538A..96B 2012A&A...538A..96B) 16 = Malavolta et al. (2017AJ....153..224M 2017AJ....153..224M) 17 = Gautier et al. (2012ApJ...749...15G 2012ApJ...749...15G, Cat. J/ApJ/749/15) 18 = Borucki et al. (2012ApJ...745..120B 2012ApJ...745..120B) 19 = Marcy et al. (2014ApJS..210...20M 2014ApJS..210...20M, Cat. J/ApJS/210/20) 20 = Borucki et al. (2013Sci...340..587B 2013Sci...340..587B) 21 = Gilliland et al. (2013ApJ...766...40G 2013ApJ...766...40G) 22 = Pepe et al. (2013Natur.503..377P 2013Natur.503..377P) 23 = Triaud et al. (2010A&A...524A..25T 2010A&A...524A..25T, Cat. J/A+A/524/A25) 24 = Albrecht et al. (2012ApJ...744..189A 2012ApJ...744..189A) 25 = Brown et al. (2012MNRAS.423.1503B 2012MNRAS.423.1503B, Cat. J/MNRAS/423/1503) 26 = Anderson et al. (2011A&A...534A..16A 2011A&A...534A..16A, Cat. J/A+A/534/A16) 27 = Triaud et al. (2011A&A...531A..24T 2011A&A...531A..24T, Cat. J/A+A/531/A24) 28 = Maxted et al. (2011PASP..123..547M 2011PASP..123..547M) 29 = Lendl et al. (2012A&A...544A..72L 2012A&A...544A..72L, Cat. J/A+A/544/A72) 30 = Hebrard et al. (2013A&A...549A.134H 2013A&A...549A.134H, Cat. J/A+A/549/A134) 31 = Anderson et al. (cw2014MNRAS.445.1114A, Cat. J/MNRAS/445/1114) 32 = Staab et al. (2017MNRAS.466..738S 2017MNRAS.466..738S) 33 = Lendl et al. (2014A&A...568A..81L 2014A&A...568A..81L, Cat. J/A+A/568/A81) 34 = Tsantaki et al. (2014A&A...570A..80T 2014A&A...570A..80T) -------------------------------------------------------------------------------- History: From electronic version of the journal References: Covino et al., Paper I 2013A&A...554A..28C 2013A&A...554A..28C, Cat. J/A+A/554/A28 Desidera et al., Paper II 2013A&A...554A..29D 2013A&A...554A..29D Esposito et al., Paper III 2014A&A...564L..13E 2014A&A...564L..13E Desidera et al., Paper IV 2014A&A...567L...6D 2014A&A...567L...6D Damasso et al., Paper V 2015A&A...575A.111D 2015A&A...575A.111D, Cat. J/A+A/575/A111 Sozzetti et al., Paper VI 2015A&A...575L..15S 2015A&A...575L..15S, Cat. J/A+A/575/L15 Borsa et al., Paper VII 2015A&A...578A..64B 2015A&A...578A..64B, Cat. J/A+A/578/A64 Mancini et al., Paper VIII 2015A&A...579A.136M 2015A&A...579A.136M, Cat. J/A+A/579/A136 Damasso et al., Paper IX 2015A&A...581L...6D 2015A&A...581L...6D Biazzo et al., Paper X 2015A&A...583A.135B 2015A&A...583A.135B, Cat. J/A+A/583/A135 Malavolta et al., Paper XI 2016A&A...588A.118M 2016A&A...588A.118M, Cat. J/A+A/588/A118 Benatti et al., Paper XII 2017A&A...599A..90B 2017A&A...599A..90B, Cat. J/A+A/599/A90 Esposito et al., Paper XIII 2017A&A...601A..53E 2017A&A...601A..53E Bonomo et al., Paper XIV 2017A&A...602A.107B 2017A&A...602A.107B, Cat. J/A+A/602/A107 Gonzalez-Alvarez et al., Paper XV 2017A&A...606A..51G 2017A&A...606A..51G Mancini et al., Paper XVI 2018A&A...613A..41M 2018A&A...613A..41M, Cat. J/A+A/613/A41 Lanza et al., Paper XVII 2018A&A...616A.155L 2018A&A...616A.155L, Cat. J/A+A/616/A155 Barbato et al., Paper XVIII 2019A&A...621A.110B 2019A&A...621A.110B, Cat. J/A+A/621/A110 Borsa et al., Paper XIX 2019A&A...631A..34B 2019A&A...631A..34B, Cat. J/A+A/631/A34 Pino et al., Paper XX 2020ApJ...894L..27P 2020ApJ...894L..27P Carleo et al., Paper XXI 2020A&A...638A...5C 2020A&A...638A...5C, Cat. J/A+A/638/A5 Guilluy et al., Paper XXII 2020A&A...639A..49G 2020A&A...639A..49G Benatti et al., Paper XXIII 2020A&A...639A..50B 2020A&A...639A..50B, Cat. J/A+A/639/A50 Barbato et al., Paper XXIV 2020A&A...641A..68B 2020A&A...641A..68B Baratella et al., Paper XXV 2020A&A...640A.123B 2020A&A...640A.123B Di Maio et al., Paper XXVI 2020A&A...641A..68B 2020A&A...641A..68B Damasso et al., Paper XXVII 2020A&A...642A.133D 2020A&A...642A.133D, Cat. J/A+A/642/A133 Carleo et al., Paper XXVIII 2021A&A...645A..71C 2021A&A...645A..71C Scandariato et al., Paper XXIX 2021A&A...646A.159S 2021A&A...646A.159S Rainer et al., Paper XXX 2021A&A...649A..29R 2021A&A...649A..29R Borsa et al., Paper XXXI 2021A&A...653A.104B 2021A&A...653A.104B Fossati et al., Paper XXXII 2022A&A...658A.136F 2022A&A...658A.136F Borsa et al., Paper XXXIII 2022A&A...663A.141B 2022A&A...663A.141B Maldonado et al., Paper XXXIV 2022A&A...663A.142M 2022A&A...663A.142M Mancini et al., Paper XXXVI 2022A&A...664A.162M 2022A&A...664A.162M, Cat. J/A+A/664/A162 Nardiello et al., Paper XXXVII 2022A&A...664A.163N 2022A&A...664A.163N, Cat. J/A+A/664/A163 Guilluy et al., Paper XXXVIII 2022A&A...665A.104G 2022A&A...665A.104G Carleo et al., Paper XXXIX 2022AJ....164..101C 2022AJ....164..101C Naponiello et al., Paper XL 2022A&A...667A...8N 2022A&A...667A...8N Pino et al., Paper XLI 2022A&A...668A.176P 2022A&A...668A.176P Damasso et al., Paper XLII 2023A&A...672A.126D 2023A&A...672A.126D Maldonado et al., Paper XLIII 2023A&A...674A.132M 2023A&A...674A.132M Rainer et al., Paper XLIV 2023A&A...676A..90R 2023A&A...676A..90R, Cat. J/A+A/676/A90 Fossati et al., Paper XLV 2023arXiv230615776F 2023arXiv230615776F Pinamonti et al., Paper XLVI 2023A&A...677A.122P 2023A&A...677A.122P, Cat. J/A+A/677/A122 Sozzetti et al., Paper XLVII 2023A&A...677L..15S 2023A&A...677L..15S Turrini et al., Paper XLVIII 2023A&A...679A..55T 2023A&A...679A..55T Mantovan et al., Paper XLIX 2024A&A...682A.129M 2024A&A...682A.129M, Cat. J/A+A/682/A129 Carleo et al., Paper L 2024A&A...682A.135C 2024A&A...682A.135C Di Maio et al., Paper LII 2024A&A...683A.239D 2024A&A...683A.239D, Cat. J/A+A/683/A239
(End) Patricia Vannier [CDS] 24-Apr-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line