J/A+A/682/A184 Atomic Data for SiI and SiII (Pehlivan Rhodin+, 2024)
Accurate and experimentally validated transition data for Si I and Si II.
Pehlivan Rhodin A., Hartman H., Nilsson H., Jonsson P.
<Astron. Astrophys. 682, A184 (2024)>
=2024A&A...682A.184P 2024A&A...682A.184P (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics
Keywords: atomic data - methods: laboratory: atomic - methods: numerical -
techniques: spectroscopic
Abstract:
In this work, we analyse spectra of neutral silicon from laboratory
measurements and perform atomic structure calculations both for
neutral and singly ionised silicon. We report accurate oscillator
strengths of SiI and SiII lines, including lines from highly excited
levels.
We have performed large scale atomic structure calculations with the
relativistic multiconfiguration Dirac-Hartree-Fock method using the
GRASP2K package to determine log gf values of SiI and SiII lines,
taking into account valence-valence and core-valence electron
correlation. In addition, we have derived oscillator strengths of SiI
lines by combining the experimental branching fractions with radiative
lifetimes from our calculations. The silicon plasma has been obtained
from a hollow cathode discharge lamp and the intensity-calibrated
high-resolution spectra have been recorded by a Fourier transform
spectrometer.
We provide an extensive set of accurate experimental and theoretical
loggf values. 17 loggf values of SiI lines in the infrared were
derived for the first time from experimental measurements. The
experimental uncertainties of f-values vary between 5% for the strong
lines and 25% for the weak lines. The theoretical values agree very
well with the experimental values of this study and complete the
missing transitions involving levels up to 3s2 3p7s of SiI. In
addition, we provide accurate calculated loggf values of SiII lines
from the levels up to 3s2 7f.
Description:
Atomic transition data for SiI and SiII are presented in the tables.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tableb1.dat 73 118 SiI energy levels
tableb2.dat 86 113 Radiative lifetimes of SiI levels
tableb3.dat 99 17 log(gf) values for SiI
tableb4.dat 163 1533 Radiative transition data of SiI
tableb5.dat 53 56 SiII energy levels
tableb6.dat 73 53 Radiative lifetimes of SiII levels
tableb7.dat 100 15 SiII A-values
tableb8.dat 115 448 Radiative transition data of SiII
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 36 A36 --- Level Energy level configuration
38- 42 I5 cm-1 Energy Energy from this work
44- 51 F8.2 cm-1 Energy2 ? Energy from W16 (1)
53- 57 I5 cm-1 Energy3 ? Energy from CFF06 (2)
59- 63 I5 cm-1 Energy4 ? Energy from S15 (3)
65- 73 F9.3 cm-1 Energy5 Energy from M&Z83 (4)
--------------------------------------------------------------------------------
Note (1): Energy level value from Wu et al., 2016CaJPh..94..359W 2016CaJPh..94..359W
Note (2): Energy level value from Froese Fischer et al., 2006ADNDT..92..607F 2006ADNDT..92..607F
Note (3): Energy level value from Savukov, 2016PhRvA..93b2511S 2016PhRvA..93b2511S
Note (4): Energy level value from Martin and Zalubas, 1983JPCRD..12..323M 1983JPCRD..12..323M
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 46 A46 --- Level Energy level designation
48- 56 F9.3 cm-1 Energy Energy from M&Z83 (1)
58- 66 F9.2 ns Lifetime Radiative lifetime from this work (2)
68- 77 F10.2 ns Lifetime2 ? Radiative lifetime from CFF05 (3)
79- 82 F4.1 ns Lifetime3 ? Radiative lifetime from OL91 (4)
84- 86 F3.1 ns e_Lifetime3 ? Radiative lifetime error from OL91 (4)
--------------------------------------------------------------------------------
Note (1): Energy level value from Martin and Zalubas, 1983JPCRD..12..323M 1983JPCRD..12..323M
Note (2): Radiative lifetime from this work
Note (3): Radiative lifetime from Froese Fischer, 2005PhRvA..71d2506F 2005PhRvA..71d2506F
Note (4): Radiative lifetime from O'Brian and Lawler, 1991PhRvA..44.7134O 1991PhRvA..44.7134O
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 17 A17 --- ULevel Upper Energy level designation
19- 38 A20 --- LLevel Lower Energy level designation
40- 47 F8.3 nm lambda Transition wavelength (1)
49- 56 F8.3 cm-1 Wavenumber Transition wavenumber (1)
58- 63 F6.4 --- BF Branching fraction
65- 66 I2 % e_BF Branching fraction uncertainty
68- 75 E8.3 s-1 Aul Transition probability
77- 82 F6.3 --- loggfExp Experimental oscillator strengths
84- 87 F4.2 --- e_loggfExp Experimental oscillator strengths error
89- 94 F6.3 --- loggfCal Calculated oscillator strengths
96- 99 F4.2 --- e_loggfCal Calculated oscillator strengths error
--------------------------------------------------------------------------------
Note (1): Wavelengths and wavenumbers derived from energy levels as presented
in NIST database (http://physics.nist.gov/asd [accessed: 2017-12-05]).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 46 A46 --- ULevel Upper Energy level designation
48- 93 A46 --- LLevel Lower Energy level designation
95-103 F9.3 cm-1 Wavenumber Transition wavenumber (1)
105-113 F9.4 nm lambda Transition vacuum wavelength (1)
115 A1 --- n_lambda [*] * for wavelength from Ritz numbers (2)
119-127 E9.4 s-1 A Transition probability
129-137 E9.4 -- gf Calculated weighted oscillator strength
139-147 E9.4 s-1 Aresc Rescaled transition probability
149-157 E9.4 -- gfresc Rescaled calculated weighted oscillator
strength
159-163 F5.3 -- funcert Uncertainty oscillator strengths (G1)
--------------------------------------------------------------------------------
Note (1): Wavelengths and wavenumbers derived from energy levels as presented
in NIST database (http://physics.nist.gov/asd [accessed: 2017-12-05])
where available, else from Ritz numbers (n_lambda = *).
Note (2): * for Ritz wavelengths calculated from the energy differences;
these transitions are not identified in the NIST database.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 23 A23 --- Level Energy level configuration
25- 30 I6 cm-1 Energy Energy from this work
32- 36 I5 cm-1 Energy2 ? Energy from CFF06 (1)
38- 43 I6 cm-1 Energy3 ? Energy from A&K14 (2)
45- 53 F9.2 cm-1 Energy4 Energy from M&Z83 (3)
--------------------------------------------------------------------------------
Note (1): Energy level value from Froese Fischer et al., 2006ADNDT..92..607F 2006ADNDT..92..607F
Note (2): Energy level value from Aggarwal and Keenan, 2014MNRAS.442..388A 2014MNRAS.442..388A
Note (3): Energy level value from Martin and Zalubas, 1983JPCRD..12..323M 1983JPCRD..12..323M
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 23 A23 --- Level Energy level designation
25- 33 F9.2 cm-1 Energy Energy from M&Z83 (1)
35- 43 F9.2 ns tau Radiative lifetime from this work (2)
45- 54 F10.2 ns tau2 ? Radiative lifetime from CFF06 (3)
56- 63 F8.1 ns tau3 ? Radiative lifetime from experiments
65- 71 F7.1 ns e_tau3 ? Radiative lifetime error from experiments
73 A1 --- r_tau3 [cde] Reference for Lifetime3 (4)
--------------------------------------------------------------------------------
Note (1): Energy level value from Martin and Zalubas, 1983JPCRD..12..323M 1983JPCRD..12..323M
Note (2): Radiative lifetime from this work
Note (3): Radiative lifetime from Froese Fischer, 2006ADNDT..92..607F 2006ADNDT..92..607F
Note (4): Radiative lifetimes from experiment as follows:
c = Bashkin et al., 1980PhyS...21..820B 1980PhyS...21..820B
d = Calamai et al., 1993ApJ...415L..59C 1993ApJ...415L..59C
e = Bergeson and Lawler, 1993ApJ...414L.137B 1993ApJ...414L.137B
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 17 A17 --- ULevel Upper Energy level designation
19- 26 F8.2 cm-1 UEnergy Energy upper level
28- 47 A20 --- LLevel Lower Energy level designation
49- 54 F6.2 cm-1 LEnergy Energy lower level
56- 62 F7.3 nm lambda Transition vacuum wavelength (1)
64- 71 E8.3 s-1 A Transition probability, this calculation
73- 76 I4 s-1 Aexp ? Transition probability, exp C93 (2)
78- 80 I3 s-1 e_Aexp ? Transition probability error, exp C93 (2)
84- 91 E8.3 s-1 Atheo1 Transition probability, calc N98 (3)
93-100 E8.3 s-1 Atheo2 Transition probability, calc AK14 (4)
--------------------------------------------------------------------------------
Note (1): Wavelength and wavenumber values are from the NIST database
(http://physics.nist.gov/asd[accessed: 2017-12-05]) when available.
Note (2): Calamai et al., 1993ApJ...415L..59C 1993ApJ...415L..59C
Note (3): Nahar, 1993PhyS...48..297N 1993PhyS...48..297N
Note (4): Aggarwal and Keenan, 2014MNRAS.442..388A 2014MNRAS.442..388A
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb8.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 22 A22 --- ULevel Upper Energy level designation
24- 45 A22 --- LLevel Lower Energy level designation
47- 55 F9.2 cm-1 Wavenumber Transition wavenumber (1)
57- 65 F9.4 nm lambda Transition vacuum wavelength (1)
67 A1 --- n_lambda [*] * for wavelength from Ritz numbers (2)
71- 79 E9.4 s-1 A Transition probability
81- 89 E9.4 -- gf Calculated weighted oscillator strengths
91- 99 E9.4 s-1 Aresc Rescaled transition probability
101-109 E9.4 -- gfresc Rescaled calculated weighted oscillator
strengths
111-115 F5.3 -- funcert Uncertainty oscillator strengths (G1)
--------------------------------------------------------------------------------
Note (1): Wavelengths and wavenumbers derived from energy levels as presented
in NIST database (http://physics.nist.gov/asd[accessed: 2017-12-05])
where available, else from Ritz numbers (n_lambda = *).
Note (2): * for Ritz wavelengths calculated from the energy differences;
these transitions are not identified in the NIST database.
--------------------------------------------------------------------------------
Global notes:
Note (G1): Estimated uncertainties based on the expression
u(f)/f=(Al-Av)/max(Al,Av), where Al and Av are the transition
rates in length and velocity forms (Ekman et al., 2014, Atoms, 2, 215).
Uncertainties were rounded to three decimals. The large uncertainties in some
of the oscillator strengths are, in general, due to the difficulties in
calculating the two-electron transitions or intercombination lines.
--------------------------------------------------------------------------------
Acknowledgements:
Henrik Hartman, Henrik.Hartman(at)mau.se
(End) Patricia Vannier [CDS] 20-Feb-2024