J/A+A/683/A203 Spectroscopic catalog of VIPERS (Pistis+, 2024)
A comparative study of the fundamental metallicity relation.
The impact of methodology on its observed evolution.
Pistis F., Pollo A., Figueira M., Vergani D., Hamed M., Malek K.,
Durkalec A., Donevski D., Salim S., Iovino A., Pearson W.J., Romano M.,
Scodeggio M.
<Astron. Astrophys. 683, A203 (2024)>
=2024A&A...683A.203P 2024A&A...683A.203P (SIMBAD/NED BibCode)
ADC_Keywords: Star Forming Region ; Galaxies ; Interstellar medium ;
Spectroscopy
Keywords: ISM: abundances - Galaxy: abundances - galaxies: evolution -
galaxies: ISM
Abstract:
We investigate the influences on the evolution of the Fundamental
Metallicity Relation of different selection criteria.
We used 5487 star-forming galaxies at a median redshift z∼0.63
extracted from the VIMOS Public Extragalactic Redshift Survey (VIPERS)
and 143774 comparison galaxies in the local Universe from the
GALEX-SDSS-WISE Legacy Catalog. We employed two families of methods:
parametric and non-parametric. In the parametric approaches, we
compared the Fundamental Metallicity Relation projections plagued by
observational biases on differently constructed control samples at
various redshifts. Then, the metallicity difference between different
redshifts in stellar mass-star formation rate bins. In the
non-parametric approach, we related the metallicity and the normalized
specific star formation rate (sSFR). To compare galaxies with the same
physical properties, we normalized the median of our samples according
to the median sSFR at median redshift z∼0.09. Then, the galaxies
with the same distance from the star-forming main sequence at their
respective redshifts are compared when the sSFR is normalized
according to the expected values from their respective star-forming
main sequence.
The methodologies implemented to construct fair, complete samples for
studying the mass-metallicity relation and the Fundamental Metallicity
Relation produced consistent results showing a small, but still
statistically significant evolution of both relations up to z∼0.63. In
particular, we observed a systematic trend where the median
metallicity of the sample at z=0.63 is lower than that of the local
sample at the same stellar mass and star formation rate. The average
difference in the metallicity of the low and intermediate redshifts is
approximately 1.8 times the metallicity standard deviation of the
median, of the intermediate redshift sample, in stellar mass-star
formation rate bins. We confirmed this result using the
Kolmogorov-Smirnov test. When we applied the stellar mass-completeness
criterion to catalogs, the metallicity difference in redshifts
decreased to approximately 0.96 times the metallicity standard
deviation of the median, thus not statistically significant. This
result may be dominated by the limited parameter space, being the
lower stellar mass galaxies where the difference is larger out from
the analysis. A careful reading of the results, and their underlying
selection criteria, are crucial in studies of the mass-metallicity and
fundamental metallicity relations.
When studying the mass-metallicity and fundamental metallicity
relations, we recommend using the non-parametric approach providing
similar results compared to parametric prescriptions, being easier to
use and results fair to interpret. The non-parametric methodology
provides a convenient way to compare physical properties, with a
smaller impact on observational selection biases.
Description:
Spectroscopic catalog for VIPERS. The table reports the IDs of
galaxies, redshift, fluxes, and equivalent widths (EW) with
corresponding errors. The spectra are fitted via the Penalized
PiXel-Fitting (pPXF) fitting code. For each line is also given a
flag value evaluating the reliability of the measurements.
The flag system is explained in the paper.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
vipers.dat 882 88340 Spectroscopic measurements
--------------------------------------------------------------------------------
See also:
J/A+A/609/A84 : VIPERS spectroscopic redshifts (PDR-2) (Scodeggio+, 2018)
Byte-by-byte Description of file: vipers.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 I9 --- Galaxy Galaxy ID (num)
11- 19 F9.7 --- zsp Spectroscopic redshift (zspec)
21- 32 E12.6 mW/m2 FH10 ?=-9999 Flux for H10 (H10_flux)
34- 45 E12.6 mW/m2 FH9 ?=-9999 Flux for H9 (H9_flux)
47- 58 E12.6 mW/m2 FH8 ?=-9999 Flux for H8 (H8_flux)
60- 71 E12.6 mW/m2 FHdelta ?=-9999 Flux for Hdelta (Hdelta_flux)
73- 84 E12.6 mW/m2 FHgamma ?=-9999 Flux for Hgamma (Hgamma_flux)
86- 97 E12.6 mW/m2 FHbeta ?=-9999 Flux for Hbeta (Hbeta_flux)
99-110 E12.6 mW/m2 FHalpha ?=-9999 Flux for Halpha (Halpha_flux)
112-123 E12.6 mW/m2 FOII3727 ?=-9999 Flux for [OII]3727 (OII3727_flux)
125-136 E12.6 mW/m2 FNeIII3968 ?=-9999 Flux for [NeIII]3968
(NeIII3968_flux)
138-149 E12.6 mW/m2 FNeIII3869 ?=-9999 Flux for [NeIII]3869
(NeIII3869_flux)
151-162 E12.6 mW/m2 FHeII4687 ?=-9999 Flux for HeII4687 (HeII4687_flux)
164-175 E12.6 mW/m2 FHeI5876 ?=-9999 Flux for HeI5876 (HeI5876_flux)
177-188 E12.6 mW/m2 FOIII4959 ?=-9999 Flux for [OIII]4959 (OIII4959_flux)
190-201 E12.6 mW/m2 FOIII5007 ?=-9999 Flux for [OIII]5007 (OIII5007_flux)
203-214 E12.6 mW/m2 FNII6549 ?=-9999 Flux for [NII]6549 (NII6549_flux)
216-227 E12.6 mW/m2 FNII6585 ?=-9999 Flux for [NII]6585 (NII6585_flux)
229-240 E12.6 mW/m2 e_FH10 []?=-9999 Flux error for H10 (H10fluxerr)
242-253 E12.6 mW/m2 e_FH9 []?=-9999 Flux error for H9 (H9fluxerr)
255-266 E12.6 mW/m2 e_FH8 []?=-9999 Flux error for H8 (H8fluxerr)
268-279 E12.6 mW/m2 e_FHdelta []?=-9999 Flux error for Hdelta
(Hdeltafluxerr)
281-292 E12.6 mW/m2 e_FHgamma []?=-9999 Flux error for Hgamma
(Hgammafluxerr)
294-305 E12.6 mW/m2 e_FHbeta []?=-9999 Flux error for Hbeta
(Hbetafluxerr)
307-318 E12.6 mW/m2 e_FHalpha []?=-9999 Flux error for Halpha
(Halphafluxerr)
320-331 E12.6 mW/m2 e_FOII3727 []?=-9999 Flux error for [OII]3727
(OII3727fluxerr)
333-344 E12.6 mW/m2 e_FNeIII3968 []?=-9999 Flux error for [NeIII]3968
(NeIII3968fluxerr)
346-357 E12.6 mW/m2 e_FNeIII3869 []?=-9999 Flux error for [NeIII]3869
(NeIII3869fluxerr)
359-370 E12.6 mW/m2 e_FHeII4687 []?=-9999 Flux error for HeII4687
(HeII4687fluxerr)
372-383 E12.6 mW/m2 e_FHeI5876 []?=-9999 Flux error for HeI5876
(HeI5876fluxerr)
385-396 E12.6 mW/m2 e_FOIII4959 []?=-9999 Flux error for [OIII]4959
(OIII4959fluxerr)
398-409 E12.6 mW/m2 e_FOIII5007 []?=-9999 Flux error for [OIII]5007
(OIII5007fluxerr)
411-422 E12.6 0.1nm EWH10 ?=-9999 Equivalent width for H10 (H10_ew)
424-435 E12.6 0.1nm EWH9 ?=-9999 Equivalent width for H9 (H9_ew)
437-448 E12.6 0.1nm EWH8 ?=-9999 Equivalent width for H8 (H8_ew)
450-461 E12.6 0.1nm EWHdelta ?=-9999 Equivalent width for Hdelta
(Hdelta_ew)
463-474 E12.6 0.1nm EWHgamma ?=-9999 Equivalent width for Hgamma
(Hgamma_ew)
476-487 E12.6 0.1nm EWHbeta ?=-9999 Equivalent width for Hbeta
(Hbeta_ew)
489-500 E12.6 0.1nm EWHalpha ?=-9999 Equivalent width for Halpha
(Halpha_ew)
502-513 E12.6 0.1nm EWOII3727 ?=-9999 Equivalent width for [OII]3727
(OII3727_ew)
515-526 E12.6 0.1nm EWNeIII3968 ?=-9999 Equivalent width for [NeIII]3968
(NeIII3968_ew)
528-539 E12.6 0.1nm EWNeIII3869 ?=-9999 Equivalent width for [NeIII]3869
(NeIII3869_ew)
541-552 E12.6 0.1nm EWHeII4687 ?=-9999 Equivalent width for HeII4687
(HeII4687_ew)
554-565 E12.6 0.1nm EWHeI5876 ?=-9999 Equivalent width for HeI5876
(HeI5876_ew)
567-578 E12.6 0.1nm EWOIII4959 ?=-9999 Equivalent width for [OIII]4959
(OIII4959_ew)
580-591 E12.6 0.1nm EWOIII5007 ?=-9999 Equivalent width for [OIII]5007
(OIII5007_ew)
593-604 E12.6 0.1nm e_EWH10 ?=-9999 Equivalent width error for H10
(H10ewerr)
606-617 E12.6 0.1nm e_EWH9 ?=-9999 Equivalent width error for H9
(H9ewerr)
619-630 E12.6 0.1nm e_EWH8 ?=-9999 Equivalent width error for H8
(H8ewerr)
632-643 E12.6 0.1nm e_EWHdelta ?=-9999 Equivalent width error for Hdelta
(Hdeltaewerr)
645-656 E12.6 0.1nm e_EWHgamma ?=-9999 Equivalent width error for Hgamma
(Hgammaewerr)
658-669 E12.6 0.1nm e_EWHbeta ?=-9999 Equivalent width error for Hbeta
(Hbetaewerr)
671-682 E12.6 0.1nm e_EWHalpha ?=-9999 Equivalent width error for Halpha
(Halphaewerr)
684-695 E12.6 0.1nm e_EWOII3727 ?=-9999 Equivalent width error for
[OII]3727 (OII3727ewerr)
697-708 E12.6 0.1nm e_EWNeIII3968 ?=-9999 Equivalent width error for
[NeIII]3968 (NeIII3968ewerr)
710-721 E12.6 0.1nm e_EWNeIII3869 ?=-9999 Equivalent width error for
[NeIII]3869 (NeIII3869ewerr)
723-734 E12.6 0.1nm e_EWHeII4687 ?=-9999 Equivalent width error for HeII4687
(HeII4687ewerr)
736-747 E12.6 0.1nm e_EWHeI5876 ?=-9999 Equivalent width error for HeI5876
(HeI5876ewerr)
749-760 E12.6 0.1nm e_EWOIII4959 ?=-9999 Equivalent width error for
[OIII]4959 (OIII4959ewerr)
762-773 E12.6 0.1nm e_EWOIII5007 ?=-9999 Equivalent width error for
[OIII]5007 (OIII5007ewerr)
775-779 I5 --- f_H10 ?=-9999 Flag for H10 (H10_flag) (1)
781-785 I5 --- f_H9 ?=-9999 Flag for H9 (H9_flag) (1)
787-791 I5 --- f_H8 ?=-9999 Flag for H8 (H8_flag) (1)
793-797 I5 --- f_Hdelta ?=-9999 Flag for Hdelta (Hdelta_flag) (1)
799-803 I5 --- f_Hgamma ?=-9999 Flag for Hgamma (Hgamma_flag) (1)
805-809 I5 --- f_Hbeta ?=-9999 Flag for Hbeta (Hbeta_flag) (1)
811-815 I5 --- f_Halpha ?=-9999 Flag for Halpha (Halpha_flag) (1)
817-821 I5 --- f_OII3727 ?=-9999 Flag for [OII]3727
(OII3727_flag) (1)
823-827 I5 --- f_NeIII3968 ?=-9999 Flag for [NeIII]3968
(NeIII3968_flag) (1)
829-833 I5 --- f_NeIII3869 ?=-9999 Flag for [NeIII]3869
(NeIII3869_flag) (1)
835-839 I5 --- f_HeII4687 ?=-9999 Flag for HeII4687
(HeII4687_flag) (1)
841-845 I5 --- f_HeI5876 ?=-9999 Flag for HeI5876 (HeI5876_flag) (1)
847-851 I5 --- f_OIII4959 ?=-9999 Flag for [OIII]4959
(OIII4959_flag) (1)
853-857 I5 --- f_OIII5007 ?=-9999 Flag for [OIII]5007
(OIII5007_flag) (1)
859-869 F11.5 --- D4000n ?=-9999 D4000n break (D4000n)
871-882 F12.6 --- e_D4000n ?=-9999 D4000n break error (D4000n_err)
--------------------------------------------------------------------------------
Note (1): Flags in the form of a 4 digits number xyzt.
The x-value is equal to 1 if the difference between the centroid of the fit
and the centroid of the observed data is less or equal to 7Å
(equivalent to 1 pixel on the VIMOS spectrograph), else its value is 0.
The y-value is equal to 1 if the FWHM is in the range 7-22Å equivalent
to 1-3 pixels of the spectrograph, else its value is 0.
The z-value is equal to 1 if the difference between the peak of the data and
the fit is less than 30%, else its value is 0.
Finally, the t-value is equal to 2 if the signal-to-noise ratio (S/N) for the
EW is greater than 3.5 or the S/N for the flux is at least 8, its value is 1
if the S/N for the EW is at least 3 or the S/N for the flux is at least 7,
else its value is 0.
--------------------------------------------------------------------------------
Acknowledgements:
Francesco Pistis, francesco.pistis(at)ncbj.gov.pl
This research was supported by the Polish National Science Centre
grant UMO-2018/30/M/ST9/00757 (PI: A. Pollo) and the European Union
under the action "NextGenerationEU - missione 4, componente 2,
investimento 1.1 - PRIN 2022 PNRR" (Project ID H53D23011030001, PI:
M. Fumagalli). K.M. is grateful for support from the Polish National
Science Centre via grant UMO-2018/30/E/ST9/00082. M.F. acknowledges
support from the First TEAM grant of the Foundation for Polish Science
No. POIR.04.04.00-00-5D21/18-00 (PI: A. Karska). D.D. acknowledges
support from the National Science Centre (grant SONATA-16,
UMO-2020/39/D/ST9/00720). M.H. acknowledges the support of the
National Science Centre (UMO-2022/45/N/ST9/01336).
(End) Patricia Vannier [CDS] 05-Dec-2023