J/A+A/683/A239    Spot modeling of V1298 Tau using SpotCCF tool (Di Maio+, 2024)

The GAPS programme at TNG. LII. Spot modeling of V1298 Tau using SpotCCF tool. Di Maio C., Petralia A., Micela G., Lanza A.F., Rainer M., Malavolta L., Benatti S., Affer L., Maldonado J., Colombo S., Damasso M., Maggio A., Biazzo K., Bignamini A., Borsa F., Boschin W., Cabona L., Cecconi M., Claudi R., Covino E., Di Fabrizio L., Gratton R., Lorenzi V., Mancini L., Messina S., Molinari E., Molinaro M., Nardiello D., Poretti E., Sozzetti A. <Astron. Astrophys. 683, A239 (2024)> =2024A&A...683A.239D 2024A&A...683A.239D (SIMBAD/NED BibCode)
ADC_Keywords: Stars, variable ; Stars, activity ; Spectroscopy Keywords: techniques: radial velocities - techniques: spectroscopic - stars: activity - starspots Abstract: The intrinsic variability due to the magnetic activity of young active stars is one of the main challenges in detecting and characterising exoplanets. The stellar activity is responsible for jitter effects observed both in photometric and spectroscopic observations that could impact our planetary detection sensitivity. We present a method able to model the stellar photosphere and its surface inhomogeneities (starspots) in young/active and fast-rotating stars, based on the cross-correlation function (CCF) technique, to extract information about the spot configuration of the star. We developed SpotCCF, a tool able to model the deformation of the CCF profile due to the presence of multiple spots on the stellar surface. Within the Global Architecture of Planetary Systems (GAPS) Project at the Telescopio Nazionale Galileo, we analysed more than 300 spectra of the young planet-hosting star V1298 Tau provided by HARPS-N high-resolution spectrograph. By applying the SpotCCF model to the CCFs we extracted the spot configuration (latitude, longitude and projected filling factor) of this star, and also provided the new RVs time series of this target. We find that the features identified in the CCF profiles of V1298 Tau are modulated by the stellar rotation, supporting our assumption that they are caused by starspots. The analysis suggests a differential rotation velocity of the star with lower rotation at higher latitudes. Also, we find that SpotCCF provides an improvement in RVs extraction with a significantly lower dispersion with respect to the commonly used pipelines, with consequent mitigation of the stellar activity contribution modulated with stellar rotation. A detection sensitivity test, by the direct injection of a planetary signal into the data, confirmed that the SpotCCF model improves the sensitivity and ability to recover planetary signals. Our method enables the modelling of the stellar photosphere, extracting the spot configuration of young/active and rapidly rotating stars. It also allows for the extraction of optimised RV time series, thereby enhancing our detection capabilities for new exoplanets and advancing our understanding of stellar activity. Description: Table B1 provides the derived properties of the spots by using SpotCCF. Objects: ------------------------------------------------------- RA (2000) DE Designation(s) ------------------------------------------------------- 04 05 19.59 +20 09 25.6 V1298 Tau = V* V1298 Tau ------------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tableb1.dat 140 308 Spot parameters derived by the two-spots model -------------------------------------------------------------------------------- See also: J/AJ/163/247 : V1298 Tau HIRES, PEPSI + TRES radial velocities (Johnson+, 2022) Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 F12.4 d Time Time of the observation (BJD) 14- 18 F5.2 deg lat1 Latitude of the spot 1 20- 24 F5.2 deg E_lat1 Upper uncertainty of lat1 26- 29 F4.2 deg e_lat1 Lower uncertainty of lat1 31- 36 F6.2 deg lon1 Longitude of the spot 1 38- 41 F4.2 deg E_lon1 Upper uncertainty of lon1 43- 46 F4.2 deg e_lon1 Lower uncertainty of low1 48- 53 F6.4 --- rr1 Radius of spot 1, in stellar radius 55- 60 F6.4 --- E_rr1 Upper uncertainty of rr1, in stellar radius 62- 67 F6.4 --- e_rr1 Lower uncertainty of rr1, in stellar radius 69- 73 F5.3 --- ffp1 Projected filling factor of spot 1 75- 79 F5.2 --- lat2 Latitude of spot 2 81- 85 F5.2 deg E_lat2 Upper uncertainty of lat2 87- 90 F4.2 deg e_lat2 Lower uncertainty of lat2 92- 97 F6.2 deg lon2 Longitude of spot 2 99-102 F4.2 deg E_lon2 Upper uncertainty of lon2 104-107 F4.2 deg e_lon2 Lower uncertainty of lon2 109-114 F6.4 --- rr2 Radius of spot 2, in stellar radius 116-121 F6.4 --- E_rr2 Upper uncertainty of rr2, in stellar radius 123-128 F6.4 --- e_rr2 Lower uncertainty of rr2, in stellar radius 130-134 F5.3 --- ffp2 Projected filling factor of spot 2 136-140 F5.3 --- ffptot Total projected filling factor -------------------------------------------------------------------------------- Acknowledgements: Claudia Di Maio, claudia.dimaio(at)inaf.it References: Covino et al., Paper I 2013A&A...554A..28C 2013A&A...554A..28C, Cat. J/A+A/554/A28 Desidera et al., Paper II 2013A&A...554A..29D 2013A&A...554A..29D Esposito et al., Paper III 2014A&A...564L..13E 2014A&A...564L..13E Desidera et al., Paper IV 2014A&A...567L...6D 2014A&A...567L...6D Damasso et al., Paper V 2015A&A...575A.111D 2015A&A...575A.111D, Cat. J/A+A/575/A111 Sozzetti et al., Paper VI 2015A&A...575L..15S 2015A&A...575L..15S, Cat. J/A+A/575/L15 Borsa et al., Paper VII 2015A&A...578A..64B 2015A&A...578A..64B, Cat. J/A+A/578/A64 Mancini et al., Paper VIII 2015A&A...579A.136M 2015A&A...579A.136M, Cat. J/A+A/579/A136 Damasso et al., Paper IX 2015A&A...581L...6D 2015A&A...581L...6D Biazzo et al., Paper X 2015A&A...583A.135B 2015A&A...583A.135B, Cat. J/A+A/583/A135 Malavolta et al., Paper XI 2016A&A...588A.118M 2016A&A...588A.118M, Cat. J/A+A/588/A118 Benatti et al., Paper XII 2017A&A...599A..90B 2017A&A...599A..90B, Cat. J/A+A/599/A90 Esposito et al., Paper XIII 2017A&A...601A..53E 2017A&A...601A..53E Bonomo et al., Paper XIV 2017A&A...602A.107B 2017A&A...602A.107B, Cat. J/A+A/602/A107 Gonzalez-Alvarez et al., Paper XV 2017A&A...606A..51G 2017A&A...606A..51G Mancini et al., Paper XVI 2018A&A...613A..41M 2018A&A...613A..41M, Cat. J/A+A/613/A41 Lanza et al., Paper XVII 2018A&A...616A.155L 2018A&A...616A.155L, Cat. J/A+A/616/A155 Barbato et al., Paper XVIII 2019A&A...621A.110B 2019A&A...621A.110B, Cat. J/A+A/621/A110 Borsa et al., Paper XIX 2019A&A...631A..34B 2019A&A...631A..34B, Cat. J/A+A/631/A34 Pino et al., Paper XX 2020ApJ...894L..27P 2020ApJ...894L..27P Carleo et al., Paper XXI 2020A&A...638A...5C 2020A&A...638A...5C, Cat. J/A+A/638/A5 Guilluy et al., Paper XXII 2020A&A...639A..49G 2020A&A...639A..49G Benatti et al., Paper XXIII 2020A&A...639A..50B 2020A&A...639A..50B, Cat. J/A+A/639/A50 Barbato et al., Paper XXIV 2020A&A...641A..68B 2020A&A...641A..68B Baratella et al., Paper XXV 2020A&A...640A.123B 2020A&A...640A.123B Di Maio et al., Paper XXVI 2020A&A...641A..68B 2020A&A...641A..68B Damasso et al., Paper XXVII 2020A&A...642A.133D 2020A&A...642A.133D, Cat. J/A+A/642/A133 Carleo et al., Paper XXVIII 2021A&A...645A..71C 2021A&A...645A..71C Scandariato et al., Paper XXIX 2021A&A...646A.159S 2021A&A...646A.159S Rainer et al., Paper XXX 2021A&A...649A..29R 2021A&A...649A..29R Borsa et al., Paper XXXI 2021A&A...653A.104B 2021A&A...653A.104B Fossati et al., Paper XXXII 2022A&A...658A.136F 2022A&A...658A.136F Borsa et al., Paper XXXIII 2022A&A...663A.141B 2022A&A...663A.141B Maldonado et al., Paper XXXIV 2022A&A...663A.142M 2022A&A...663A.142M Mancini et al., Paper XXXVI 2022A&A...664A.162M 2022A&A...664A.162M, Cat. J/A+A/664/A162 Nardiello et al., Paper XXXVII 2022A&A...664A.163N 2022A&A...664A.163N, Cat. J/A+A/664/A163 Guilluy et al., Paper XXXVIII 2022A&A...665A.104G 2022A&A...665A.104G Carleo et al., Paper XXXIX 2022AJ....164..101C 2022AJ....164..101C Naponiello et al., Paper XL 2022A&A...667A...8N 2022A&A...667A...8N Pino et al., Paper XLI 2022A&A...668A.176P 2022A&A...668A.176P Damasso et al., Paper XLII 2023A&A...672A.126D 2023A&A...672A.126D Maldonado et al., Paper XLIII 2023A&A...674A.132M 2023A&A...674A.132M Rainer et al., Paper XLIV 2023A&A...676A..90R 2023A&A...676A..90R, Cat. J/A+A/676/A90 Fossati et al., Paper XLV 2023arXiv230615776F 2023arXiv230615776F Pinamonti et al., Paper XLVI 2023A&A...677A.122P 2023A&A...677A.122P, Cat. J/A+A/677/A122 Sozzetti et al., Paper XLVII 2023A&A...677L..15S 2023A&A...677L..15S Turrini et al., Paper XLVIII 2023A&A...679A..55T 2023A&A...679A..55T
(End) Patricia Vannier [CDS] 08-Jan-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line