J/A+A/684/A126      Field RR Lyrae stars RV and pulsation models   (Bras+, 2024)

The Baade-Wesselink projection factor of RR Lyrae stars. Calibration from OHP/SOPHIE spectroscopy and Gaia DR3 parallaxes. Bras G., Kervella P., Trahin B., Wielgorski P., Zgirski B., Merand A., Nardetto N., Gallenne A., Hocde V., Breuval L., Afanasiev A., Prietrzynski G., Gieren W. <Astron. Astrophys. 684, A126 (2024)> =2024A&A...684A.126B 2024A&A...684A.126B (SIMBAD/NED BibCode)
ADC_Keywords: Stars, variable ; Radial velocities ; Models Keywords: techniques: radial velocities - stars: distances - stars: oscillations - stars: variables: RR Lyrae Abstract: The application of the Parallax of Pulsation (PoP) technique to determine the distances of pulsating stars implies the use of a scaling parameter, the projection factor (p-factor), that is required to transform disk-integrated radial velocities (RVs) into photospheric expansion velocities. The value of this parameter is poorly known and still debated. Most present applications of the PoP technique assume a constant p-factor. However, it may actually depend on the physical parameters of each star, as past studies aimed at calibrating the p-factor (usually for Cepheids) led to a broad range of individual values. We aim at calibrating the p-factors of a sample of RR Lyrae stars (RRLs), to compare them with classical Cepheids (CCs). Due to their higher surface gravity, RRLs have more compact atmospheres, thus providing a valuable comparison with their supergiant siblings. We determine the p-factor of 17 RR Lyrae stars, by modelling their pulsation using the SPIPS code. The models are constrained using Gaia DR3 parallaxes, photometry and new radial velocities that we collected with the OHP/SOPHIE spectrograph. We carefully examine the different steps of the PoP technique, in particular the method to determine the RV from spectra using the classical approach based on the cross- correlation function (CCF). The method employed to extract the radial velocity from the CCF has a strong impact on the p-factor, up to 10%. However, this choice of method results in a global scaling of the p-factor, and it affects only marginally the scatter of p within the sample for a given method. Over our RRL sample, we find a mean value of p=1.248±0.022 for RVs derived using a Gaussian fit of the CCF. There is no evidence for a different value of the p-factors of RRLs, although their distribution for RRLs appear significantly less scattered (σ∼7%) than those of CCs (σ∼12%). The p-factor does not appear to depend in a simple way on fundamental stellar parameters (pulsation period, radius, metallicity, amplitude of the radial velocity curve). We argue that large-amplitude dynamical phenomena occurring in the atmosphere of RRLs (and CCs) during their pulsation affect the relative velocity of the spectral line-forming regions compared to the velocity of the photosphere. Description: Table 5 contains measurements of radial velocity from spectra with the OHP/SOPHIE spectrograph using different cross-correlation masks and fitting methods. Specific cross-correlation masks are given for different spectral depths Models presented in Appendix A are given for all 17 RR Lyrae stars. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file stars.dat 48 25 List of studied stars table5.dat 240 369 Radial velocity measurements from OHP/SOPHIE spectra mask_a.dat 60 364 Mask all unblended lines mask_d.dat 60 80 Mask deep unblended lines mask_m.dat 60 155 Mask medium unblended lines mask_w.dat 60 140 Mask all unblended lines maskaw.dat 76 339 Weighted mask all unblended lines fits/* . 17 Individual fits of SPIPS models -------------------------------------------------------------------------------- Byte-by-byte Description of file: stars.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- Name Star name 11- 12 I2 h RAh Simbad right ascension (J2000) 14- 15 I2 min RAm Simbad right ascension (J2000) 17- 21 F5.2 s RAs Simbad right ascension (J2000) 23 A1 --- DE- Simbad declination sign (J2000) 24- 25 I2 deg DEd Simbad declination (J2000) 27- 28 I2 arcmin DEm Simbad declination (J2000) 30- 33 F4.1 arcsec DEs Simbad declination (J2000) 35- 45 A11 --- FileName Name of the SPIPS models fits file in subdirectory fits 47- 48 A2 --- LC [lc ] Indicates light curve data in table 5 -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- Name Object name 11- 22 F12.4 d Epoch Heliocentric Julian Day of observation 24- 53 A30 --- Spect SOPHIE spectrum name 55- 71 F17.14 --- S/N Signal-to-noise ratio for the spectrum 73- 93 F21.16 km/s RVg ? RV, gaussian fit, all unblended lines 96-113 F18.16 km/s e_RVg ? RV error, gaussian fit, all unblended lines 115-135 F21.16 km/s RV2g ? RV, bigaussian fit, all unblended lines 138-156 F19.16 km/s e_RV2g ? RV error, bigaussian fit, all unblended lines 158-178 F21.16 km/s RVd ? RV, gaussian fit, deep unblended lines 181-198 F18.16 km/s e_RVd ? RV error, gaussian fit, deep unblended lines 200-220 F21.16 km/s RVm ? RV, gaussian fit, medium unblended lines 223-240 F18.16 km/s e_RVm ? RV error, gaussian fit, medium unblended lines -------------------------------------------------------------------------------- Byte-by-byte Description of file: mask_a.dat mask_d.dat mask_m.dat mask_w.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 18 F18.14 nm wavePeak Line central wavelength 20- 37 F18.14 nm waveBase Line minimum wavelength 39- 56 F18.14 nm waveTop Line maximum wavelength 58- 60 F3.1 --- Depth Depth of the mask -------------------------------------------------------------------------------- Byte-by-byte Description of file: maskaw.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 18 F18.14 nm wavePeak Line central wavelength 20- 37 F18.14 nm waveBase Line minimum wavelength 39- 56 F18.14 nm waveTop Line maximum wavelength 58- 76 F19.17 --- Depth Depth of the line for the mask -------------------------------------------------------------------------------- Acknowledgements: Garance Bras, garance.bras(at)obspm.fr
(End) Patricia Vannier [CDS] 27-Dec-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line