J/A+A/684/A19           The XXL Survey. LII.                      (Slaus+, 2024)

The XXL Survey. LII. The evolution of radio AGN luminosity function determined via parametric methods from GMRT, ATCA, VLA and Cambridge interferometer observations. Slaus B., Smolcic V., Ivezic Z., Fotopoulou S., Willott C.J., Pendo P., Vignali C., Chiappetti L., Pierre M. <Astron. Astrophys. 684, A19 (2024)> =2024A&A...684A..19S 2024A&A...684A..19S (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, radio ; Radio continuum ; Radio sources Keywords: galaxies: evolution - galaxies: active - galaxies: luminosity function, mass function - radio continuum: galaxies - galaxies: nuclei - galaxies: statistics Abstract: We model the evolution of active galactic nuclei (AGN) by constructing their radio LFs. We used a set of surveys of varying area and depth, namely, the deep COSMOS survey of 1916 AGN sources; the wide, shallow 3CRR, 7C, and 6CE surveys, together containing 356 AGN; and the intermediate XXL-North and South fields consisting of 899 and 1484 sources, respectively. We also used the CENSORS, BRL, Wall & Peacock, and Config surveys, respectively consisting of 150, 178, 233, and 230 sources. Together, these surveys account for 5446 AGN sources and constrained the LFs at high redshift and over a wide range of luminosities (up to z~=3 and log(L/W/Hz)∈[22,29]). We concentrated on parametric methods within the Bayesian framework, which allowed us to perform model selection between a set of different models. By comparing the marginalised likelihoods and both the Akaike information criterion and the Bayesian information criterion, we show that the luminosity-dependent density evolution (LDDE) model fits the data best, with evidence ratios varying from 'strong' (>10) to 'decisive' (>100), according to the Jeffreys' interpretation. The best-fitting model gives insight into the physical picture of AGN evolution, where AGN evolve differently as a function of their radio luminosity. We determined the number density, luminosity density, and kinetic luminosity density as a function of redshift, and we observed a flattening of these functions at higher redshifts, which is not present in simpler models. We explain these trends by our use of the LDDE model. Finally, we divided our sample into subsets according to the stellar mass of the host galaxies in order to investigate a possible bimodality in evolution. We found a difference in LF shape and evolution between these subsets. All together, these findings point to a physical picture where the evolution and density of AGN cannot be explained well by simple models but require more complex models either via AGN sub-populations, where the total AGN sample is divided into sub-samples according to various properties, such as optical properties and stellar mass, or via luminosity-dependent functions. Description: The table presents a catalogue of 3479 radio sources compiled from the COSMOS, XXL-S, 3CRR, 6C and 7C fields with their stellar masses. The stellar masses for the COSMOS and XXL-S surveys was taken from the respective catalogues. The remaining stellar masses were determined from the K-band magnitudes. More details about this process can be found in the paper. The spectral indices of the 3CRR, 6C and 7C fields are complete and taken from the respective catalogues. The spectral indices of the XXL-S field are filled with a value of -0.75 when missing. The spectral indices of the COSMOS field are described in COSMOS VLA (Smolcic et al., 2017A&A...602A...1S 2017A&A...602A...1S, Cat. J/A+A/602/A1). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file catalog.dat 68 3479 Stellar mass catalogue -------------------------------------------------------------------------------- See also: IX/52 : XXL Survey. DR2 (Chiappetti+, 2018) J/A+A/602/A1 : VLA-COSMOS 3 GHz Large Project (Smolcic+, 2017) J/A+A/684/A18 : XLSSC NIKA2 sample images (Adam+, 2024) Byte-by-byte Description of file: catalog.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 30 A30 --- Name Name of the radio source (COSMOSVLA3 JHHMMSS.ss+DDMMSS.s) 32- 36 F5.3 --- z Best available redshift for the source 38- 48 E11.5 mJy S1400MHz Source flux at 1400 MHz 50- 55 F6.3 --- alpha Spectral index of the source (1) 57- 62 F6.3 [Msun] logMstar Log stellar mass of the source 64- 68 A5 --- Survey Original survey (2) -------------------------------------------------------------------------------- Note (1): set to mean of respective field when not available. Note (2): References as follows: C = COSMOS VLA, Smolcic et al., 2017A&A...602A...1S 2017A&A...602A...1S, Cat. J/A+A/602/A1 XXL-S = XXL-South ATCA, Butler et al., Paper XVIII, 2018A&A...620A...3B 2018A&A...620A...3B, Cat. IX/52 3 = 3CRR, Willott et al., 1999MNRAS.309.1017W 1999MNRAS.309.1017W 6 = 6CE, Rawlings et al., 2001MNRAS.322..523R 2001MNRAS.322..523R 7 = 7C, Willott et al., 2001MNRAS.322..536W 2001MNRAS.322..536W -------------------------------------------------------------------------------- Acknowledgements: Bruno Slaus, bslaus(at)phy.hr Lucio Chiappetti, lucio(at)lambrate.inaf.it References: XXL DR1, Cat. IX/49 Pierre et al., Paper I 2016A&A...592A...1P 2016A&A...592A...1P Pacaud et al., Paper II 2016A&A...592A...2P 2016A&A...592A...2P Giles et al., Paper III 2016A&A...592A...3G 2016A&A...592A...3G Lieu et al., Paper IV 2016A&A...592A...4L 2016A&A...592A...4L Mantz et al. Paper V 2014ApJ...794..157M 2014ApJ...794..157M Fotopoulou et al., Paper VI 2016A&A...592A...5F 2016A&A...592A...5F Pompei et al., Paper VII 2016A&A...592A...6P 2016A&A...592A...6P Adami et al., Paper VIII 2016A&A...592A...7A 2016A&A...592A...7A Baran et al., Paper IX 2016A&A...592A...8B 2016A&A...592A...8B Ziparo et al., Paper X 2016A&A...592A...9Z 2016A&A...592A...9Z Smolic et al., Paper XI 2016A&A...592A..10S 2016A&A...592A..10S Koulouridis et al., Paper XII 2016A&A...592A..11K 2016A&A...592A..11K Eckert et al., Paper XIII 2016A&A...592A..12E 2016A&A...592A..12E Lidman et al., Paper XIV 2016PASA...33....1L 2016PASA...33....1L Lavoie et al., Paper XV 2016MNRAS.462.4141L 2016MNRAS.462.4141L XXL DR2, Cat. IX/52 Marulli et al., Paper XVI 2018A&A...620A...1M 2018A&A...620A...1M Mantz et al., Paper XVII 2018A&A...620A...2M 2018A&A...620A...2M Butler et al., Paper XVIII 2018A&A...620A...3B 2018A&A...620A...3B Koulouridis et al., Paper XIX 2018A&A...620A...4K 2018A&A...620A...4K Adami et al., Paper XX 2018A&A...620A...5A 2018A&A...620A...5A Melnyk et al., Paper XXI 2018A&A...620A...6M 2018A&A...620A...6M Guglielmo et al., Paper XXII 2018A&A...620A...7G 2018A&A...620A...7G Farahi et al., Paper XXIII 2018A&A...620A...8F 2018A&A...620A...8F Faccioli et al., Paper XXIV 2018A&A...620A...9F 2018A&A...620A...9F Pacaud et al., Paper XXV 2018A&A...620A..10P 2018A&A...620A..10P Ciliegi et al., Paper XXVI 2018A&A...620A..11C 2018A&A...620A..11C Chiappetti et al., Paper XXVII 2018A&A...620A..12C 2018A&A...620A..12C Ricci et al., Paper XXVIII 2018A&A...620A..13R 2018A&A...620A..13R Smolcic et al., Paper XXIX 2018A&A...620A..14S 2018A&A...620A..14S Guglielmo et al., Paper XXX 2018A&A...620A..15G 2018A&A...620A..15G Butler et al., Paper XXXI 2018A&A...620A..16B 2018A&A...620A..16B Plionis et al., Paper XXXII 2018A&A...620A..17P 2018A&A...620A..17P Logan et al., Paper XXXIII 2018A&A...620A..18L 2018A&A...620A..18L Horellou et al., Paper XXXIV 2018A&A...620A..19H 2018A&A...620A..19H Koulouridis et al., Paper XXXV 2018A&A...620A..20K 2018A&A...620A..20K Butler et al., Paper XXXVI 2019A&A...625A.111B 2019A&A...625A.111B Guglielmo et al., Paper XXXVII 2019A&A...625A.112G 2019A&A...625A.112G Sereno et al., Paper XXXVIII 2019A&A...632A..54S 2019A&A...632A..54S Eyles et al., Paper XXXIX 2020A&A...633A...6E 2020A&A...633A...6E Masoura et al., Paper XL 2020A&A...638A..45M 2020A&A...638A..45M, Cat. J/A+A/638/A45 Slaus et al., Paper XLI 2020A&A...638A..46S 2020A&A...638A..46S, Cat. J/A+A/638/A46 Trudeau et al., Paper XLII 2020A&A...642A.124T 2020A&A...642A.124T Giles et al., Paper XLII 2022MNRAS.511.1227G 2022MNRAS.511.1227G Ceraj et al., Paper XLIII 2020A&A...642A.125C 2020A&A...642A.125C Ricci et al., Paper XLIV 2020A&A...642A.126R 2020A&A...642A.126R Crossett et al., Paper XLV 2022A&A...663A...2C 2022A&A...663A...2C, Cat. J/A+A/663/A2 Duffy et al., Paper XLVIII 2022MNRAS.512.2525D 2022MNRAS.512.2525D Trudeau et al., Paper XLIX 2022MNRAS.515.2529T 2022MNRAS.515.2529T Bhargava et al., Paper L 2023A&A...673A..92B 2023A&A...673A..92B Adam et al., Paper LI 2024A&A...684A..18A 2024A&A...684A..18A, Cat. J/A+A/684/A18
(End) Bruno Slaus [Uni. Zagreb], Patricia Vannier [CDS] 27-Dec-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line