J/A+A/684/A69          beta Pic Moving Group photometry         (Gratton+, 2024)

Implications of the discovery of AF Lep b The mass-luminosity relation for planets in the beta Pic Moving Group and the L-T transition for young companions and free-floating planets. Gratton R., Bonavita M., Mesa D., Zurlo A., Marino S., Desidera S., D'Orazi V., Rigliaco E., Squicciarini V., Nogueira P.H. <Astron. Astrophys. 684, A69 (2024)> =2024A&A...684A..69G 2024A&A...684A..69G (SIMBAD/NED BibCode)
ADC_Keywords: Associations, stellar ; Photometry, infrared ; Effective temperatures ; Stars, masses Keywords: planets and satellites: atmospheres - planets and satellites: formation - planets and satellites: fundamental parameters Abstract: Dynamical masses of young planets aged between 10 and 200Myr detected in imaging play a crucial role in shaping models of giant planet formation. Regrettably, only a few such objects possess these characteristics. Furthermore, the evolutionary pattern of young sub-stellar companions in near-infrared colour-magnitude diagrams might diverge from free-floating objects, possibly due to differing formation processes. The recent identification of a giant planet around AF Lep, part of the beta Pic moving group (BPMG), encouraged us to re-examine these points. We considered updated dynamical masses and luminosities for the sub-stellar objects in the BPMG. In addition, we compared the properties of sub-stellar companions and free-floating objects in the BPMG and other young associations remapping the positions of the objects in the colour-magnitude diagram into a dustiness-temperature plane. We found that cold-start evolutionary models do not reproduce the mass-luminosity relation for sub-stellar companions in the BPMG. This aligns rather closely with predictions from 'hot start' scenarios and is consistent with recent planet formation models. We obtain rather good agreement with masses from photometry and the remapping approach compared to actual dynamical masses. We also found a strong suggestion that the near-infrared colour-magnitude diagram for young companions is different from that of free-floating objects belonging to the same young associations. If confirmed by further data, this last result would imply that cloud settling - which likely causes the transition between L and T spectral type - occurs at a lower effective temperature in young companions than in free-floating objects. This might tentatively be explained with a different chemical composition. Description: The Appendices contain a compilation of data for sub-stellar companions and free-floating objects belonging to young and intermediate age associations used in this paper, and the derivation of a uniform set of temperature and masses for them. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1.dat 146 34 Photometry for sub-stellar objects in the BPMG tablea2.dat 193 202 Photometry for sub-stellar objects in other young moving groups tableb1.dat 71 131 Masses of sub-stellar objects with ages in the range 10-200Myr derived using AMES models refs.dat 67 53 References -------------------------------------------------------------------------------- See also: J/A+A/583/A85 : Binaries in beta Pic moving group (Alonso-Floriano+, 2015) J/AJ/140/119 : β Pic and AB Dor moving groups members (Schlieder+, 2010) J/AJ/143/80 : Low-mass stars of beta Pic and AB Dor groups (Schlieder+, 2012) Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1 A1 --- Code Code (G1) 3- 27 A25 --- Name Name 29- 32 F4.1 % Pmemb Membership probability 34- 38 F5.2 mas plx Photometric parallax 40- 45 F6.3 mag Jmag ?=- J magnitude 47- 51 F5.3 mag e_Jmag ?=- J magnitude error 53- 58 F6.3 mag Hmag ?=- H magnitude 60- 64 F5.3 mag e_Hmag ?=- H magnitude error 66- 71 F6.3 mag Kmag ?=- K magnitude 73- 77 F5.3 mag e_Kmag ?=- K magnitude error 79- 83 F5.2 mag JMAG ?=- Absolute J magnitude 85- 89 F5.3 mag e_JMAG ?=- Absolute J magnitude error 91- 95 F5.2 mag HMAG ?=- Absolute H magnitude 97-100 F4.2 mag e_HMAG ?=- Absolute H magnitude error 102-106 F5.2 mag KMAG ?=- Absolute K magnitude 108-111 F4.2 mag e_KMAG ?=- Absolute K magnitude error 113-117 F5.2 mag J-K ?=- J-K colour index 119-122 F4.2 mag e_J-K ?=- J-K colour index error 124-146 A23 --- Ref Reference, in refs.dat file -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 22 A22 --- Group Moving group name 24- 49 A26 --- Name Name 52- 55 F4.1 % Pmemb ?=- Membership probability 57- 62 F6.2 mas plx Photometric parallax 64- 69 F6.3 mag Jmag ?=- J magnitude 71- 75 F5.3 mag e_Jmag ?=- J magnitude error 77- 82 F6.3 mag Hmag ?=- H magnitude 84- 88 F5.3 mag e_Hmag ?=- H magnitude error 90- 95 F6.3 mag Kmag ?=- K magnitude 97-101 F5.3 mag e_Kmag ?=- K magnitude error 103-107 F5.2 mag JMAG ?=- Absolute J magnitude 109-112 F4.2 mag e_JMAG ?=- Absolute J magnitude error 114-118 F5.2 mag HMAG ?=- Absolute H magnitude 120-123 F4.2 mag e_HMAG ?=- Absolute H magnitude error 125-129 F5.2 mag KMAG ?=- Absolute K magnitude 131-134 F4.2 mag e_KMAG ?=- Absolute K magnitude error 136-140 F5.2 mag J-K ?=- J-K colour index 142-145 F4.2 mag e_J-K ?=- J-K colour index error 147-190 A44 --- Ref Reference, in refs.dat file 193 A1 --- Note [b] b Binary -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1 A1 --- Code Code (G1) 3- 26 A24 --- Name Name 29- 31 I3 Gyr Age Age 33- 36 I4 K Teff1 ?=- Effective temperature (BC) 38- 39 I2 K e_Teff1 ? Effective temperature (BC) error 41- 44 I4 K Teff2 Effective temperature (remap) 46- 48 I3 K e_Teff2 Effective temperature (remap) error 50- 54 F5.2 --- r r parameter (1) 56- 59 F4.2 --- e_r r parameter error 61- 65 F5.2 MJup Mass Mass 67- 71 F5.2 MJup e_Mass Mass error -------------------------------------------------------------------------------- Note (1): To show the relation between the effective temperature and the transition from cloudy to clean atmospheres, we remapped the colour-magnitude diagram (cmd) into an effective temperature - relevance of dust plane. In our approach, this last effect is represented by a parameter r. By linear interpolation between these points, we can define a new isochrone that corresponds to any arbitrary value of r, where r=0 for the AMES-COND isochrones and r=1 for the AMES-DUSTY one. -------------------------------------------------------------------------------- Byte-by-byte Description of file: refs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 27 A27 --- Ref Reference code 28- 46 A19 --- BibCoe BibCode 48- 67 A20 --- Com Comments -------------------------------------------------------------------------------- Global notes: Note (G1): Code as follows: c = Companions f = Free floating objects -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Patricia Vannier [CDS] 06-Jun-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line