J/A+A/685/A41 Type II Cepheids in the Magellanic Clouds (Sicignano+, 2024)
The VMC survey. L. Type II Cepheids in the Magellanic Clouds.
Period-luminosity relations in the near-infrared bands.
Sicignano T., Ripepi V., Marconi M., Molinaro R., Bhardwaj A.,
Cioni M.-R.L., de Grij R., Storm J., Groenewegen M.A.T., Ivanov V.D.,
De Somma G.
<Astron. Astrophys. 685, A41 (2024)>
=2024A&A...685A..41S 2024A&A...685A..41S (SIMBAD/NED BibCode)
ADC_Keywords: Stars, variable ; Photometry, infrared ; Optical
Keywords: stars: oscillations - stars: Population II -
stars: variables: Cepheids - Magellanic Clouds - distance scale
Abstract:
Type II Cepheids (T2Cs) are the less frequently used counterparts of
classical or type I Cepheids (CCs) which provide the primary
calibration of the distance ladder for measuring the Hubble constant
in the local Universe. In the era of the `Hubble tension', T2C
variables together with the RR Lyrae stars and the tip of the red
giant branch (TRGB) can potentially provide non-CC-dependent
calibration of the cosmic distance ladder. Our goal is to provide an
absolute calibration of the period--luminosity,
period--luminosity--colour, and period--Wesenheit relations (PL, PLC,
and PW, respectively) of T2Cs in the Large Magellanic Cloud (LMC),
which traditionally serves as a crucial first anchor of the
extragalactic distance ladder. We exploited time-series photometry in
the near-infrared (NIR) Y,J and Ks bands for a sample of approximately
320 T2Cs in the Magellanic Clouds (MCs). These observations were
acquired during 2009--2018 in the context of the VISTA survey of the
Magellanic Clouds system (VMC), an ESO public survey. We supplemented
the NIR photometry from the VMC survey with well-sampled optical light
curves and accurate pulsation periods from the Optical Gravitational
Lensing Experiment (OGLE) IV survey and the Gaia mission. We used the
best-quality NIR light curves to generate custom templates for
modelling sparsely sampled light curves in YJKs bands. The
best-fitting YJKs template light curves were used to derive accurate
and precise intensity-averaged mean magnitudes and pulsation
amplitudes of 277 and 62 T2Cs in the LMC and SMC, respectively. We
used optical and NIR mean magnitudes for different T2C subclasses
(BLHer, WVir, and RVTau) to derive PL/PLC/PW relations in multiple
bands, which were calibrated with the geometric distance to the LMC as
derived from eclipsing binaries and with the Gaia parallaxes. We used
our new empirical calibrations of PL and PW relations to obtain
distances to 22 T2C-host Galactic globular clusters, which were found
to be systematically smaller by almost 0.1mag and 0.03-0.06mag than
in the literature when the zero points are calibrated with the
distance of the LMC or Gaia parallaxes, respectively. Better
agreement is found between our distances and those based on RR Lyrae
stars in globular clusters, providing strong support for using these
population II stars together with the TRGB for future distance scale
studies.
Description:
Near-infrared photometry for Type II Cepheids (T2C) in the Magellanic
Clouds.
Table 1 is made up of all the time series of the T2Cs acquired from
VMC.
Table 3 shows the intensity-averaged magnitudes for 339 T2C in the Y,
J, and Ks bands.
Table 5 collects the optical photometry for the same stars already
published in the literature.
Tables A1, A2 and A3 show the templates, respectively in the Y, J, and
Ks band, used to calculate the intensity-averaged magnitudes.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 360 339 Intensity-averaged magnitudes for 339 T2C
in the Y, J, and Ks bands
table5.dat 296 339 Optical photometry for the same stars already
published in the literature
table1.dat 58 9815 Made up of all the time series of the T2Cs
acquired from VMC
tablea1.dat 157 10 Templates in the Y band, used to calculate the
intensity-averaged magnitudes
tablea2.dat 157 10 Templates in the J band, used to calculate the
intensity-averaged magnitudes
tablea3.dat 157 20 Templates in the Ks band, used to calculate the
intensity-averaged magnitudes
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 30 A30 --- ID Identification from the OGLE IV or
Gaia DR2/3 catalogues or other
32- 49 F18.15 deg RAdeg Right ascension (J2000)
51- 69 F19.15 deg DEdeg Declination (J2000)
71- 75 A5 --- Class Classification of the star in the
T2C subtypes (G1)
77- 96 F20.16 d P Period
98-113 F16.13 mag <Ymag> ? Intensity-averaged magnitude in the Y band
computed with the template-fitting procedure
115-134 E20.14 mag e_<Ymag> ? Robust mad uncertainty on the Mag_Y computed
with the template-fitting procedure
136-153 F18.16 mag AmpY ? Peak-to-peak Amplitude in the Y band
computed with the template-fitting procedure
155-174 E20.14 mag e_AmpY ? Robust mad uncertainty on the amp_Y
computed with the template-fitting procedure
176-180 A5 --- flagY [false true] Tag for the fitting procedure
in the Y band (2)
182-197 F16.13 mag <Jmag> ? Intensity-averaged magnitude in the J band
computed with the template-fitting procedure
199-218 E20.14 mag e_<Jmag> ? Robust mad uncertainty on the Mag_J
computed with the template-fitting procedure
220-238 F19.17 mag AmpJ ? Peak-to-peak Amplitude in the J band
computed with the template-fitting procedure
240-259 E20.14 mag e_AmpJ ? Robust mad uncertainty on the amp_J
computed with the template-fitting procedure
261-265 A5 --- flagJ [false true] Tag for the fitting procedure
in the J band (2)
267-282 F16.13 mag <Kmag> ? Intensity-averaged magnitude in the K band
computed with the template-fitting procedure
284-302 F19.17 mag e_<Kmag> ? Robust mad uncertainty on the Mag_K
computed with the template-fitting procedure
304-321 F18.16 mag AmpK ? Peak-to-peak Amplitude in the K band
computed with the template-fitting procedure
323-341 F19.17 mag e_AmpK ? Robust mad uncertainty on the amp_K
computed with the template-fitting procedure
343-347 A5 --- flagK [false true] Tag for the fitting procedure
in the K band (2)
349-353 F5.3 mag E(V-I) Colour excess
355 I1 --- flagEVI [0/1] References for the color map.
357-360 A4 --- Source Flag indicating the origin of the object
identification, period and epoch
of maximum (3)
--------------------------------------------------------------------------------
Note (2): Flag as follows:
true = a fixed amplitude was used to calculate intensity-averaged magnitude
false = amplitude was retrieved from Chi-squared fitting on the light curves
Note (3): Flag as follows:
1 = Skowron et al. (2021)
0 = Schlegel et al. (1998)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 30 A30 --- ID Identification from the OGLE IV or
Gaia DR2/3 catalogues or other
32- 49 F18.15 deg RAdeg Right ascension (J2000)
51- 69 F19.15 deg DEdeg Declination (J2000)
71- 75 A5 --- Class Classification of the star in the
T2C subtypes (G1)
77- 96 F20.16 d P Period
98-112 E15.7 d e_P rms uncertainty on the Period
114-119 F6.3 mag <Vmag> ?=99.999 Magnitude in the V band from OGLE IV
121-126 F6.3 mag <Imag> ?=99.999 Magnitude in the I band from OGLE IV
128-145 F18.13 --- epochI Epoch in the I band from OGLE IV
147-152 F6.3 mag AmpI ?=99.999 Amplitude in the I band from OGLE IV
154-171 F18.15 mag <Gmag> Magnitude in the G band from Gaia DR3
173-195 E23.15 mag e_<Gmag> Uncertainty on the G magnitude from Gaia DR3
197-214 F18.15 mag <BPmag> Magnitude in the G_BP band from Gaia DR3
216-237 F22.19 mag e_<BPmag> Uncertainty on the G_BP magnitude from Gaia DR3
239-256 F18.15 mag <RPmag> Magnitude in the G_RP band from Gaia DR3
258-279 F22.19 mag e_<RPmag> Uncertainty on the G_RP magnitude from Gaia DR3
281-284 A4 --- Source [Gaia OGLE] Flag indicating the origin of the
object identification, period and
epoch of maximum
286 I1 --- SOS [0/2] Flag discerning the technique uses to
calculate the average magnitudes in the
Gaia bands (2)
288-296 A9 --- VI [P22; OGLE ] Flag for the origin of the
magnitude in the V and I band used during
the analysis (3)
--------------------------------------------------------------------------------
Note (2): Flag as follows:
0 = the magnitudes are calculated with the standard technique adopted for all
the stars (Evans et al. 2018)
1 = the magnitudes are calculated with the averaged-intensity technique
(Clementini et al. 2016)
2 = no magnitudes in the Gaia bands.
Note (3): the V,I data are completely missing for the stars identificated by
Gaia and partially for some stars identificated by OGLE: in these cases where
used the photometric transformations provided by Pancino et al. (2022, P22).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 30 A30 --- SourceID Identification from the OGLE IV or
Gaia DR2/3 catalogues or other
32- 42 F11.5 d HJD Heliocentric Julian day (HJD-2400000)
44- 49 F6.3 mag mag Magnitude in Band
51- 55 F5.3 mag e_mag rms uncertainty on magnitude
57- 58 A2 --- Band [J Y Ks] Band in which the magnitude
was collected
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea1.dat tablea2.dat tablea3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 7 A7 --- Type Classification of the star in the T2C
subtypes (G1)
9- 15 F7.4 d P Period
17- 22 F6.4 --- A1 Amplitude of the first harmonic in the
Fourier series
24- 29 F6.4 --- Phi1 Phase of the first harmonic in the
Fourier series
31- 36 F6.4 --- A2 Amplitude of the second harmonic in the
Fourier series
38- 43 F6.4 --- Phi2 Phase of the second harmonic in the
Fourier series
45- 50 F6.4 --- A3 Amplitude of the third harmonic in the
Fourier series
52- 57 F6.4 --- Phi3 Phase of the third harmonic in the
Fourier series
59- 64 F6.4 --- A4 Amplitude of the fourth harmonic in the
Fourier series
66- 71 F6.4 --- Phi4 Phase of the fourth harmonic in the
Fourier series
73- 78 F6.4 --- A5 Amplitude of the fifth harmonic in the
Fourier series
80- 85 F6.4 --- Phi5 Phase of the fifth harmonic in the
Fourier series
87- 92 F6.4 --- A6 Amplitude of the sixth harmonic in the
Fourier series
94- 99 F6.4 --- Phi6 Phase of the sixth harmonic in the
Fourier series
101-106 F6.4 --- A7 Amplitude of the seventh harmonic in the
Fourier series
108-113 F6.4 --- Phi7 Phase of the seventh harmonic in the
Fourier series
115-120 F6.4 --- A8 Amplitude of the eighth harmonic in the
Fourier series
122-127 F6.4 --- Phi8 Phase of the eighth harmonic in the
Fourier series
129-134 F6.4 --- A9 Amplitude of the ninth harmonic in the
Fourier series
136-141 F6.4 --- Phi9 Phase of the ninth harmonic in the
Fourier series
143-148 F6.4 --- A10 Amplitude of the tenth harmonic in the
Fourier series
150-157 F8.6 --- Phi10 Phase of the tenth harmonic in the
Fourier series
--------------------------------------------------------------------------------
Global notes:
Note (G1): Class as follows:
BLHer = BL Herculis
WVir = W Virginis
pWVir = peculiar W Virginis
RVTau = RV Tauri
Acknowledgements:
Teresa Sicignano, teresa.sicignano(at)inaf.it
References:
Cioni et al., Paper I 2011A&A...527A.116C 2011A&A...527A.116C, Cat. II/351
Miszalski et al., Paper II 2011A&A...531A.157M 2011A&A...531A.157M, Cat. J/A+A/531/A157
Gullieuszik et al., Paper III 2012A&A...537A.105G 2012A&A...537A.105G, Cat. J/A+A/537/A105
Rubele et al., Paper IV 2012A&A...537A.106R 2012A&A...537A.106R,
Ripepi et al., Paper V 2012MNRAS.424.1807R 2012MNRAS.424.1807R, Cat. J/MNRAS/424/1807
Cioni et al., Paper VI 2013A&A...549A..29C 2013A&A...549A..29C, Cat. J/A+A/549/A29
Tatton et al., Paper VII 2013A&A...554A..33T 2013A&A...554A..33T, Cat. J/A+A/554/A33
Ripepi et al., Paper VIII 2014MNRAS.437.2307R 2014MNRAS.437.2307R, Cat. J/MNRAS/437/2307
Cioni et al., Paper IX 2014A&A...562A..32C 2014A&A...562A..32C
Moretti et al., Paper X 2014MNRAS.437.2702M 2014MNRAS.437.2702M, Cat. J/MNRAS/437/2702
Li et al., Paper XI 2014ApJ...790...35L 2014ApJ...790...35L
Piatti et al., Paper XII 2014A&A...570A..74P 2014A&A...570A..74P
Ripepi et al., Paper XIII 2015MNRAS.446.3034R 2015MNRAS.446.3034R, Cat. J/MNRAS/446/3034
Rubele et al., Paper XIV 2015MNRAS.449..639R 2015MNRAS.449..639R, Cat. J/MNRAS/449/639
Piatti et al., Paper XV 2015MNRAS.450..552P 2015MNRAS.450..552P
Piatti et al., Paper XVI 2015MNRAS.454..839P 2015MNRAS.454..839P, Cat. J/MNRAS/454/839
Cioni et al., Paper XVII 2016A&A...586A..77C 2016A&A...586A..77C
Zhang et al., Paper XVIII 2015ApJ...815...95Z 2015ApJ...815...95Z
Ripepi et al., Paper XIX 2016ApJS..224...21R 2016ApJS..224...21R, Cat. J/ApJS/224/21
Moretti et al., Paper XX 2016MNRAS.459.1687M 2016MNRAS.459.1687M, Cat. J/MNRAS/459/1687
Piatti et al., Paper XXI 2016MNRAS.460..383P 2016MNRAS.460..383P
Sun et al., Paper XXII 2017ApJ...835..171S 2017ApJ...835..171S
Sun et al., Paper XXVII 2017ApJ...849..149S 2017ApJ...849..149S, Cat. J/ApJ/849/149
Marconi et al., Paper XXIII 2017MNRAS.466.3206M 2017MNRAS.466.3206M
Subramanian et al., Paper XXIV 2017MNRAS.467.2980S 2017MNRAS.467.2980S
Ripepi et al., Paper XXV 2017MNRAS.472..808R 2017MNRAS.472..808R, Cat. J/MNRAS/472/808
Muraveva et al., Paper XXVI 2018MNRAS.473.3131M 2018MNRAS.473.3131M, Cat. J/MNRAS/473/3131
Sun et al., Paper XXVII 2017ApJ...849..149S 2017ApJ...849..149S, Cat. J/ApJ/849/149
Niederhofer et al., Paper XXVIII 2018A&A...612A.115N 2018A&A...612A.115N
Sun et al., Paper XXIX 2018ApJ...858...31S 2018ApJ...858...31S, Cat. J/ApJ/858/31
Niederhofer et al., Paper XXX 2018A&A...613L...8N 2018A&A...613L...8N
Rubele et al., Paper XXXI 2018MNRAS.478.5017R 2018MNRAS.478.5017R
Zivkov et al., Paper XXXII 2018A&A...620A.143Z 2018A&A...620A.143Z
Groenewegen et al., Paper XXXIII 2019A&A...622A..63G 2019A&A...622A..63G
El Youssoufi et al., Paper XXXIV 2019MNRAS.490.1076E 2019MNRAS.490.1076E
Ragosta et al., Paper XXXV 2019MNRAS.490.4975R 2019MNRAS.490.4975R
Zivkov et al., Paper XXXVI 2020MNRAS.494..458Z 2020MNRAS.494..458Z, Cat. J/MNRAS/494/458
Groenewegen et al., Paper XXXVII 2020A&A...636A..48G 2020A&A...636A..48G, Cat. J/A+A/636/A48
Schmidt et al., Paper XXXVIII 2020A&A...641A.134S 2020A&A...641A.134S
Choudhury et al., Paper XXXIX 2020MNRAS.497.3746C 2020MNRAS.497.3746C
Tatton et al., Paper XL 2021MNRAS.504.2983T 2021MNRAS.504.2983T
Niederhofer et al., Paper XLI 2021MNRAS.502.2859N 2021MNRAS.502.2859N
Cusano et al., Paper XLII 2021MNRAS.504....1C 2021MNRAS.504....1C
Mazzi et al., Paper XLIII 2021MNRAS.508..245M 2021MNRAS.508..245M
Choudhury et al., Paper XLIV 2021MNRAS.507.4752C 2021MNRAS.507.4752C
Schmidt et al., Paper XLV 2022A&A...663A.107S 2022A&A...663A.107S, Cat. J/MNRAS/663/A107
Niederhofer et al., Paper XLVI 2022MNRAS.512.5423N 2022MNRAS.512.5423N
Miller et al., Paper XLVII 2022MNRAS.512.1196M 2022MNRAS.512.1196M, Cat. J/MNRAS/512/1196
Ripepi et al., Paper XLVIII 2022MNRAS.512..563R 2022MNRAS.512..563R
Pennock et al., Paper XLIX 2022MNRAS.515.6046P 2022MNRAS.515.6046P
(End) Patricia Vannier [CDS] 05-Feb-2024