J/A+A/686/A283      Differential reddening in globular clusters (Pancino+, 2024)

Differential reddening in 48 globular clusters: An end to the quest for the intracluster medium. Pancino E., Zocchi A., Rainer M, Monaci M., Massari D., Monelli M., Hunt L.K., Monaco L., Martinez-Vazquez C.E., Sanna N., Bianchi S., Stetson P.B. <Astron. Astrophys. 686, A283 (2024)> =2024A&A...686A.283P 2024A&A...686A.283P (SIMBAD/NED BibCode)
ADC_Keywords: Clusters, globular ; Interstellar medium ; Photometry ; Optical Keywords: techniques: photometric - dust, extinction - globular clusters: general Abstract: For decades, it has been theorized that a tenuous but detectable intracluster medium should be present in globular clusters, which is continuously replenished by the gas and dust ejected by bright giants and periodically cleared by interactions with the Galactic disk. However, dedicated searches, especially in infrared and radio wavelengths, have returned mostly upper limits, which are lower than theoretical expectations by several orders of magnitude. We profited from recent wide-field photometry for 48 Galactic globular clusters to compute high-resolution maps of differential reddening, which can be used to correct any photometric catalog in these areas for reddening variations. Using 3D reddening maps from the literature, we evaluated the amount of foreground extinction. This allowed us to estimate the masses of the intracluster medium in our sample clusters, with an accuracy of one order of magnitude. Our estimates agree with the few available literature detections and with theoretical expectations. Because the discrepancy between observations and expectations only concerns literature upper limits, we explored possible reasons why they could be underestimated and we show that two recent discoveries can explain the discrepancy. The first is the recent discovery that the intracluster medium in 47 Tuc is not centrally concentrated. This is also supported by our maps, which in the majority of cases do not show a central reddening concentration. The second is the discovery that the dust in metal-poor ([Fe/H]≤∼1dex) globular clusters is dominated by iron grains rather than silicates, which undermines previous dust mass estimates from observed upper limits. We conclude that current evidence, including our maps, does not contradict theoretical expectations and the problem of the missing intracluster medium is no longer an issue. Description: We tabulate the relevant properties and our measurements of differential reddening and related quantities for the sample of 48 globular clusters, including our estimates of the intracluster medium masses. We also provide the differential reddening maps for each cluster, for the stars that were used to create the maps. Finally, we provide a compilation of literature determinations and upper limits that we used in the paper. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 555 48 Sample globular clusters and ICM measurements table2.dat 184 854047 Differential reddening maps table3.dat 68 44 Compilation of literature estimates -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- Cluster Cluster name 11- 18 A8 --- AltName Alternate cluster name 20- 21 I2 h RAh Right ascension (J2000) of cluster center 23- 24 I2 min RAm Right ascension (J2000) of cluster center 26- 30 F5.2 s RAs Right ascension (J2000) of cluster center 32 A1 --- DE- Declination sign (J2000) of cluster center 33- 34 I2 deg DEd Declination (J2000) of cluster center 36- 37 I2 arcmin DEm Declination (J2000) of cluster center 39- 42 F4.1 arcsec DEs Declination (J2000) of cluster center 44- 47 I4 pix X0 X coordinate of cluster center 49- 52 I4 pix Y0 Y coordinate of cluster center 54- 57 F4.1 kpc Dist Distance of the cluster 59- 62 F4.2 arcmin rc Adopted core radius 64- 80 F17.15 arcmin rh Adopted half-light radius 82- 99 F18.14 arcmin rt Adopted truncation (or tidal) radius 101-117 F17.14 arcmin rl Limiting radius of reddening map 119-123 F5.2 [-] [Fe/H] Metallicity from Harris et al. (2010) (1) 125-128 F4.2 mag E(B-V) E(B-V) from Harris et al. (2010) (1) 130-132 I3 --- k Number of neighbors for map smoothing 134-152 F19.17 mag dE(B-V)max Total differential reddening 154-171 F18.16 mag e_dE(B-V)max Uncertainty on d(E-B)Vmax 173-186 A14 --- flag Flag for foreground contamination 188-205 F18.13 --- n-hb Expected number of HB stars 207-224 F18.16 --- e_n-hb Uncertainty on n-hb 226-241 E16.2 yr t-hb Expected HB lifetime 243-247 E5.1 yr e_t-hb Uncertainty on t-hb 249-257 I9 yr tc Time from last disk crossing 259-267 I9 yr e_tc Uncertainty on tc 269-288 E20.18 cm-2 th-nHmin Expected minimum H column density 290-308 E19.17 cm-2 e_th-nHmin Uncertainty on th-nHmin 310-329 E20.18 cm-2 th-nHmax Expected maximum H column density 331-350 E20.18 cm-2 e_th-nHmax Uncertainty on th-nHmax 352-370 F19.14 Msun th-Mgas Expected ICM gas mass 372-390 F19.15 Msun e_th-Mgas Uncertainty on th-Mgas 392-410 F19.17 Msun th-Mdust Expected ICM dust mass 412-431 F20.18 Msun e_th-Mdust Uncertainty on th-Mdust 433-452 E20.16 cm-2 rh-nH ? Estimated H column density 454-473 E20.16 cm-2 e_rh-nH ? Uncertainty on rh-nH 475-493 F19.15 Msun rh-Mgas ? Estimated ICM gas mass 495-513 F19.15 Msun e_rh-Mgas ? Uncertainty on rh-Mgas 515-534 F20.18 Msun rh-Mdust ? Estimated ICM dust mass 536-555 F20.18 Msun e_rh-Mdust ? Uncertainty on rh-Mdust -------------------------------------------------------------------------------- Note (1): Harris et al., 2010, A New Catalog of Globular Clusters in the Milky Way, https://ui.adsabs.harvard.edu/abs/2010arXiv1012.3224H, accessed: 2020-07-18 -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- Cluster Cluster Name 9- 14 I6 --- Star Star identifier within the cluster 16- 24 F9.3 pix X X coordinate of the star 26- 34 F9.3 pix Y Y coordinate of the star 36- 37 I2 h RAh Right ascension ICRF 39- 40 I2 min RAm Right ascension ICRF 42- 46 F5.2 s RAs Right ascension ICRF 48 A1 --- DE- Declination sign ICRF 49- 50 I2 deg DEd Declination ICRF 52- 53 I2 arcmin DEm Declination ICRF 55- 58 F4.1 arcsec DEs Declination ICRF 60- 65 F6.3 mag Vmag Johnson V magnitude 67- 75 E9.4 mag e_Vmag Uncertainty in Vmag 77- 98 E22.14 mag dE(B-V)raw Raw color displacement 100-121 E22.14 mag dE(B-V) Differential reddening 123-141 F19.17 mag dE(B-V)mad MAD of dEBV in neighborhood of the stars 143-162 F20.18 mag e_dE(B-V) Statistical error on dE(B-V) 164-181 F18.14 arcsec dE(B-V)res Local spatial resolution 183-184 I2 --- Flag [-1/2] Quality flag on the star -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- Cluster Cluster name 10- 17 E8.3 Msun Mass Literature mass estimate 19- 23 F5.2 arcmin FoV ? Typical field of view (when relevant) 25- 29 I5 K Temp ? Adopted temperature (when relevant) 31- 41 A11 --- Meas Either "detection" or "upper limit" 43- 55 A13 --- Type ICM component (dust, gas, etc.) 57- 68 A12 --- Source Literature reference of the source paper (1) -------------------------------------------------------------------------------- Note (1): References as follows: Abbate+18 = Abbate et al. (2018MNRAS.481..627A 2018MNRAS.481..627A) Barmby+09 = Barmby et al. (2009AJ....137..207B 2009AJ....137..207B) Boyer+06 = Boyer et al. (2006AJ....132.1415B 2006AJ....132.1415B) Boyer+08 = Boyer et al. (2008AJ....135.1395B 2008AJ....135.1395B) Boyer+09 = Boyer et al. (2009ApJ...705..746B 2009ApJ...705..746B) Evans+03 = Evans et al. (2003A&A...408L...9E 2003A&A...408L...9E) Faulkner+91 = Faulkner et al. (1991ApJ...374L..45F 1991ApJ...374L..45F) Forte+92 = Forte et al. (1992ApJ...388..383F 1992ApJ...388..383F) Knapp+96 = Knapp et al. (1996ApJ...462..231K 1996ApJ...462..231K) LeonCombes96 = Leon & Combes (1996A&A...309..123L 1996A&A...309..123L) Matsunaga+08 = Matsunaga et al. (2008PASJ...60S.415M 2008PASJ...60S.415M) Mendez+89 = Mendez et al. (1989ApJ...338..136M 1989ApJ...338..136M) Penny+97 = Penny et al. (1997A&A...317..694P 1997A&A...317..694P) Smith+90 = Smith et al. (1990ApJ...353..168S 1990ApJ...353..168S) -------------------------------------------------------------------------------- Acknowledgements: Elena Pancino, elena.pancino(at)inaf.it
(End) Patricia Vannier [CDS] 09-Apr-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line