J/A+A/687/A205 Stellar parameters of 286 CARMENES M dwarfs (Mas-Buitrago+, 2024)

Using autoencoders and deep transfer learning to determine the stellar parameters of 286 CARMENES M dwarfs. Mas-Buitrago P., Gonzalez-Marcos A., Solano E., Passegger V.M., Cortes-Contreras M., Ordieres-Mere J., Bello-Garcia A., Caballero J.A., Schweitzer A., Tabernero H.M., Montes D., Cifuentes C. <Astron. Astrophys. 687, A205 (2024)> =2024A&A...687A.205M 2024A&A...687A.205M (SIMBAD/NED BibCode)
ADC_Keywords: Stars, M-type ; Stars, dwarfs ; Spectroscopy Keywords: methods: data analysis - techniques: spectroscopic - stars: fundamental parameters - stars: late-type - stars: low-mass Abstract: Deep learning (DL) techniques are a promising approach among the set of methods used in the ever-challenging determination of stellar parameters in M dwarfs. In this context, transfer learning could play an important role in mitigating uncertainties in the results due to the synthetic gap (i.e. difference in feature distributions between observed and synthetic data). We propose a feature-based deep transfer learning (DTL) approach based on autoencoders to determine stellar parameters from high-resolution spectra. Using this methodology, we provide new estimations for the effective temperature, surface gravity, metallicity, and projected rotational velocity for 286 M dwarfs observed by the CARMENES survey. Using autoencoder architectures, we projected synthetic PHOENIX-ACES spectra and observed CARMENES spectra onto a new feature space of lower dimensionality in which the differences between the two domains are reduced. We used this low-dimensional new feature space as input for a convolutional neural network to obtain the stellar parameter determinations. We performed an extensive analysis of our estimated stellar parameters, ranging from 3050 to 4300K, 4.7 to 5.1dex, and -0.53 to 0.25dex for Teff, logg, and [Fe/H], respectively. Our results are broadly consistent with those of recent studies using CARMENES data, with a systematic deviation in our Teff scale towards hotter values for estimations above 3750K. Furthermore, our methodology mitigates the deviations in metallicity found in previous DL techniques due to the synthetic gap. We consolidated a DTL-based methodology to determine stellar parameters in M dwarfs from synthetic spectra, with no need for high-quality measurements involved in the knowledge transfer. These results suggest the great potential of DTL to mitigate the differences in feature distributions between the observations and the PHOENIX-ACES spectra. Description: Stellar atmospheric parameters of 286 CARMENES M dwarfs determined using our deep transfer learning methodology. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1.dat 128 286 The catalogue -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Karmn CARMENES identifier (JHHMMm+DDdA) 13- 35 A23 --- Name Discovery or most common name (1) 37- 52 F16.11 deg RAdeg ? Right ascension (J2000.0) (2) 54- 68 F15.11 deg DEdeg ? Declination (J2000.0) (2) 70- 73 I4 K Teff Effective temperature from our methodology 75- 77 I3 K e_Teff Delta Teff for -1 sigma 79- 81 I3 K E_Teff Delta Teff for +1 sigma 83- 86 F4.2 [cm/s2] logg Surface gravity from our methodology 88- 91 F4.2 [cm/s2] e_logg Delta logg for -1 sigma 93- 96 F4.2 [cm/s2] E_logg Delta logg for +1 sigma 98-102 F5.2 [Sun] [M/H] Metallicity from our methodology 104-107 F4.2 [Sun] e_[M/H] Delta [M/H] for -1 sigma 109-112 F4.2 [Sun] E_[M/H] Delta [M/H] for +1 sigma 114-118 F5.2 [km/s] vsini Projected rotational velocity from our methodology 120-123 F4.2 [km/s] e_vsini Delta vsini for -1 sigma 125-128 F4.2 [km/s] E_vsini Delta vsini for +1 sigma -------------------------------------------------------------------------------- Note (1): From Cifuentes et al. (2020A&A...642A.115C 2020A&A...642A.115C, Cat. J/A+A/642/A115) Note (2): Equatorial coordinates at epoch J2016.0 in equinox J2000, from Gaia DR3. -------------------------------------------------------------------------------- Acknowledgements: Pedro Mas-Buitrago, pmas(at)cab.inta-csic.es
(End) Patricia Vannier [CDS] 13-May-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line