J/A+A/687/A239      Open clusters abundances         (Carbajo-Hijarrubia+, 2024)

OCCASO V. Chemical-abundance trends with Galactocentric distance and age. Carbajo-Hijarrubia J., Casamiquela L., Carrera R., Balaguer-Nunez L., Jordi C., Anders F., Gallart C., Pancino E., Drazdauskas A., Stonkute E., Tautvaisiene G., Carrasco J.M., Masana E., Cantat-Gaudin T., Blanco-Cuaraesma S. <Astron. Astrophys. 687, A239 (2024)> =2024A&A...687A.239C 2024A&A...687A.239C (SIMBAD/NED BibCode)
ADC_Keywords: Milky Way ; Clusters, open ; Abundances ; Spectroscopy Keywords: stars: abundances - Galaxy: abundances - Galaxy: disc - Galaxy: evolution - Galaxy: open clusters and associations: general Abstract: Open clusters provide valuable information on stellar nucleosynthesis and the chemical evolution of the Galactic disc, as their age and distances can be measured more precisely with photometry than for field stars. Our aim is to study the chemical distribution of the Galactic disc using open clusters by analysing the existence of gradients with Galactocentric distance, azimuth or height from the plane and dependency with age. High-resolution spectra (R>60000) of 194 stars belonging to 36 open clusters are used to determine atmospheric parameters and chemical abundances with two independent methods: equivalent widths and spectral synthesis. The sample has been complemented with 63 clusters with high-resolution spectroscopy from literature. We measure local thermodynamic equilibrium abundances for 21 elements: alpha (Mg, Si, Ca, and Ti), odd-Z (Na and Al), Fe-peak (Fe, Sc, V, Cr, Mn, Co, Ni, Cu, and Zn), and neutron-capture (Sr, Y, Zr, Ba, Ce, and Nd). We also provide non-local thermodynamic equilibrium abundances for elements when corrections are available. We find inner disc young clusters enhanced in [Mg/Fe]and [Si/Fe] compared to other clusters of their age. For [Ba/Fe] we report an age trend flattening for older clusters (age<2.5Ga). The studied elements follow the expected radial gradients as a function of their nucleosynthesis groups, which are significantly steeper for the oldest systems. For the first time, we investigate the existence of an azimuthal gradient, finding some hints of its existence among the old clusters (age>2Ga). Description: Chemical abundances for 36 open cumulus clusters studied with high resolution spectroscopy. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 1511 36 Properties of the 36 OCCASO OCs in this work tablea1.dat 24 1625 Line list for EW tablea2.dat 13 343 Line list for SS tablea4.dat 1138 194 Stellar parameters and chemical abundances for the 194 stars in this work -------------------------------------------------------------------------------- See also: J/MNRAS/458/3150 : OCCASO survey. HRV for 12 open clusters (Casamiquela+, 2016) J/A+A/610/A66 : Equivalent widths of 7 stars in NGC 6705 (Casamiquela+ 2018) J/MNRAS/490/1821 : Abundances for stars in 18 open clusters (Casamiquela+ 2019) J/A+A/658/A14 : OCCASO IV. Open cluster stars radial velocities (Carrera+, 2022) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Cluster Cluster Name 18- 24 F7.3 deg RAdeg Right ascension (J2000) 26- 32 F7.3 deg DEdeg Declination (J2000) 34- 52 F19.17 Gyr Age Age 54- 59 F6.1 pc DistPc Distance in pc 61- 67 F7.1 pc X X galactocentric position 69- 75 F7.1 pc Y Y galactocentric position 77- 82 F6.1 pc Z Z galactocentric position 84- 90 F7.1 pc Rgc Galactocentric radius 92- 112 F21.18 --- [Fe/H] Abundance [Fe/H] 114- 134 F21.19 --- e_[Fe/H] Error in [Fe/H] abundance 136- 139 F4.1 --- o_[Fe/H] Number of stars used to compute [Fe/H] abundance 141- 164 E24.16 --- [Mg1/Fe] Abundance [Mg/Fe] 166- 185 F20.18 --- e_[Mg1/Fe] Error in [Mg/Fe] abundance 187- 190 F4.1 --- o_[Mg1/Fe] Number of stars used to compute [Mg/Fe] abundance 192- 211 F20.18 --- [Si1/Fe] Abundance [Si/Fe] 213- 232 F20.18 --- e_[Si1/Fe] Error in [Si/Fe] abundance 234- 237 F4.1 --- o_[Si1/Fe] Number of stars used to compute [Si/Fe] abundance 239- 261 E23.15 --- [Ca1/Fe] Abundance [Ca/Fe] 263- 282 F20.18 --- e_[Ca1/Fe] Error in [Ca/Fe] abundance 284- 287 F4.1 --- o_[Ca1/Fe] Number of stars used to compute [Ca/Fe] abundance 289- 311 E23.15 --- [Ti1/Fe] Abundance [Ti/Fe] 313- 332 F20.18 --- e_[Ti1/Fe] Error in [Ti/Fe] abundance 334- 337 F4.1 --- o_[Ti1/Fe] Number of stars used to compute [Ti/Fe] abundance 339- 358 F20.17 --- [Na1/Fe] Abundance [Na/Fe] 360- 379 F20.18 --- e_[Na1/Fe] Error in [Na/Fe] abundance 381- 384 F4.1 --- o_[Na1/Fe] Number of stars used to compute [Na/Fe] abundance 386- 405 F20.18 --- [Al1/Fe] Abundance [Al/Fe] 407- 426 F20.18 --- e_[Al1/Fe] Error in [Al/Fe] abundance 428- 431 F4.1 --- o_[Al1/Fe] Number of stars used to compute [Al/Fe] abundance 433- 454 F22.19 --- [Sc2/Fe] Abundance [Sc/Fe] 456- 475 F20.18 --- e_[Sc2/Fe] Error in [Sc/Fe] abundance 477- 480 F4.1 --- o_[Sc2/Fe] Number of stars used to compute [Sc/Fe] abundance 482- 503 F22.19 --- [V1/Fe] Abundance [V/Fe] 505- 524 F20.18 --- e_[V1/Fe] Error in [V/Fe] abundance 526- 529 F4.1 --- o_[V1/Fe] Number of stars used to compute [V/Fe] abundance 531- 553 E23.15 --- [Cr1/Fe] Abundance [Cr/Fe] 555- 574 F20.18 --- e_[Cr1/Fe] Error in [Cr/Fe] abundance 576- 579 F4.1 --- o_[Cr1/Fe] Number of stars used to compute [Cr/Fe] abundance 581- 600 F20.17 --- [Mn1/Fe] Abundance [Mn/Fe] 602- 621 F20.18 --- e_[Mn1/Fe] Error in [Mn/Fe] abundance 623- 626 F4.1 --- o_[Mn1/Fe] Number of stars used to compute [Mn/Fe] abundance 628- 649 F22.19 --- [Co1/Fe] Abundance [Co/Fe] 651- 670 F20.18 --- e_[Co1/Fe] Error in [Co/Fe] abundance 672- 675 F4.1 --- o_[Co1/Fe] Number of stars used to compute [Co/Fe] abundance 677- 698 F22.19 --- [Ni1/Fe] Abundance [Ni/Fe] abundance 700- 719 F20.18 --- e_[Ni1/Fe] Error in [Ni/Fe] abundance 721- 724 F4.1 --- o_[Ni1/Fe] Number of stars used to compute [Ni/Fe] abundance 726- 746 F21.18 --- [Cu1/Fe] Abundance [Cu/Fe] 748- 767 F20.18 --- e_[Cu1/Fe] Error in [Cu/Fe] abundance 769- 772 F4.1 --- o_[Cu1/Fe] Number of stars used to compute [Cu/Fe] abundance 774- 795 F22.19 --- [Zn1/Fe] ?=- Abundance [Zn/Fe] abundance 797- 816 F20.18 --- e_[Zn1/Fe] ?=- Error in [Zn/Fe] abundance 818- 820 F3.1 --- o_[Zn1/Fe] ?=- Number of stars used to compute [Zn/Fe] abundance 822- 842 F21.18 --- [Sr1/Fe] Abundance [Sr/Fe] 844- 863 F20.18 --- e_[Sr1/Fe] Error in [Sr/Fe] 865- 867 F3.1 --- o_[Sr1/Fe] Number of stars used to compute [Sr/Fe] abundance 869- 890 F22.19 --- [Y2/Fe] Abundance [Y/Fe] 892- 911 F20.18 --- e_[Y2/Fe] Error in [Y/Fe] abundance 913- 916 F4.1 --- o_[Y2/Fe] Number of stars used to compute [Y/Fe] abundance 918- 938 F21.18 --- [Zr2/Fe] Abundance [Zr/Fe] 940- 959 F20.18 --- e_[Zr2/Fe] Error in [Zr/Fe] abundance 961- 964 F4.1 --- o_[Zr2/Fe] Number of stars used to compute [Zr/Fe] abundance 966- 986 F21.18 --- [Ba2/Fe] Abundance [Ba/Fe] 988-1007 F20.18 --- e_[Ba2/Fe] Error in [Ba/Fe] 1009-1012 F4.1 --- o_[Ba2/Fe] Number of stars used to compute [Ba/Fe] abundance 1014-1035 F22.19 --- [Ce2/Fe] Abundance [Ce/Fe] 1037-1057 F21.19 --- e_[Ce2/Fe] Error in [Ce/Fe] abundance 1059-1062 F4.1 --- o_[Ce2/Fe] Number of stars used to compute [Ce/Fe] abundance 1064-1084 F21.18 --- [Pr2/Fe] Abundance [Pr/Fe] 1086-1105 F20.18 --- e_[Pr2/Fe] Error in [Pr/Fe] abundance 1107-1110 F4.1 --- o_[Pr2/Fe] Number of stars used to compute [Pr/Fe] abundance 1112-1129 F18.16 --- Fe1-NLTE Fe abundance NLTE 1131-1150 F20.18 --- e_Fe1-NLTE Error Fe abundance NLTE 1152-1169 F18.16 --- Mg1-NLTE Mg abundance NLTE 1171-1191 F21.19 --- e_Mg1-NLTE Error Mg abundance NLTE 1193-1210 F18.16 --- Si1-NLTE Si abundance NLTE 1212-1231 F20.18 --- e_Si1-NLTE Error Si abundance NLTE 1233-1250 F18.16 --- Ca1-NLTE Ca abundance NLTE 1252-1271 F20.18 --- e_Ca1-NLTE Error Ca abundance NLTE 1273-1290 F18.16 --- Ti1-NLTE Ti abundance NLTE 1292-1311 F20.18 --- e_Ti1-NLTE Error Ti abundance NLTE 1313-1330 F18.16 --- Na1-NLTE Na abundance NLTE 1332-1351 F20.18 --- e_Na1-NLTE Error Na abundance NLTE 1353-1370 F18.16 --- Cr1-NLTE Cr abundance NLTE 1372-1391 F20.18 --- e_Cr1-NLTE Error Cr abundance NLTE 1393-1410 F18.16 --- Mn1-NLTE Mn abundance NLTE 1412-1431 F20.18 --- e_Mn1-NLTE Error Mn abundance NLTE 1433-1450 F18.16 --- Co1-NLTE Co abundance NLTE 1452-1471 F20.18 --- e_Co1-NLTE Error Co abundance NLTE 1473-1490 F18.16 --- Ba2-NLTE Ba abundance NLTE 1492-1511 F20.18 --- e_Ba2-NLTE Error Ba abundance NLTE -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 18 F18.13 0.1nm lambda Line wavelength 20- 24 F5.2 --- El Element number -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 F8.4 0.1nm lambda Line wavelength 10- 13 A4 --- El Element name -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Cluster Cluster name 18- 36 I19 --- GaiaDR3 Gaia DR3 source identifier 38- 52 A15 --- OCCASO OCCASO source identifier 54- 61 F8.3 K Teff ?=- Effective temperature 63- 81 F19.15 K e_Teff ?=- Effective temperature error 83- 87 F5.3 [cm/s2] logg ?=- Surface gravity 89- 107 F19.17 [cm/s2] e_logg ?=- Surface gravity error 109- 111 F3.1 --- Flag [1/4]?=- GALA flag (1) 113- 134 E22.14 --- [Fe/H] ?=- Abundance [Fe/H] 136- 155 F20.18 --- e_[Fe/H] ?=- Error in [Fe/H] abundance 157- 161 F5.1 --- o_[Fe/H] ?=- Number of lines used to compute [Fe/H] abundance 163- 185 E23.15 --- [Mg1/Fe] ?=- Abundance [Mg/Fe] 187- 206 F20.18 --- e_[Mg1/Fe] ?=- Error in [Mg/Fe] abundance 208- 210 F3.1 --- o_[Mg1/Fe] ?=- Number of lines used to compute [Mg/Fe] abundance 212- 232 F21.18 --- [Si1/Fe] ?=- Abundance [Si/Fe] 234- 253 F20.18 --- e_[Si1/Fe] ?=- Error in [Si/Fe] abundance 255- 258 F4.1 --- o_[Si1/Fe] ?=- Number of lines used to compute [Si/Fe] abundance 260- 282 E23.15 --- [Ca1/Fe] ?=- Abundance [Ca/Fe] 284- 303 F20.18 --- e_[Ca1/Fe] ?=- Error in [Ca/Fe] abundance 305- 308 F4.1 --- o_[Ca1/Fe] ?=- Number of lines used to compute [Ca/Fe] abundance 310- 333 E24.16 --- [Ti1/Fe] ?=- Abundance [Ti/Fe] 335- 354 F20.18 --- e_[Ti1/Fe] ?=- Error in [Ti/Fe] abundance 356- 359 F4.1 --- n_[Ti1/Fe] ?=- Number of lines used to compute [Ti/Fe] abundance 361- 382 F22.19 --- [Na1/Fe] ?=- Abundance [Na/Fe] 384- 403 F20.18 --- e_[Na1/Fe] ?=- Error in [Na/Fe] abundance 405- 407 F3.1 --- o_[Na1/Fe] ?=- Number of lines used to compute [Na/Fe] abundance 409- 432 E24.16 --- [Al1/Fe] ?=- Abundance [Al/Fe] 434- 453 F20.18 --- e_[Al1/Fe] ?=- Error in [Al/Fe] abundance 455- 457 F3.1 --- o_[Al1/Fe] ?=- Number of lines used to compute [Al/Fe] abundance 459- 482 E24.16 --- [Sc2/Fe] ?=- Abundance [Sc/Fe] 484- 503 F20.18 --- e_[Sc2/Fe] ?=- Error in [Sc/Fe] abundance 505- 508 F4.1 --- o_[Sc2/Fe] ?=- Number of lines used to compute [Sc/Fe] abundance 510- 533 E24.16 --- [V1/Fe] ?=- Abundance [V/Fe] 535- 554 F20.18 --- e_[V1/Fe] ?=- Error in [V/Fe] abundance 556- 559 F4.1 --- o_[V1/Fe] ?=- Number of lines used to compute [V/Fe] abundance 561- 582 F22.19 --- [Cr1/Fe] ?=- Abundance [Cr/Fe] 584- 603 F20.18 --- e_[Cr1/Fe] ?=- Error in [Cr/Fe] abundance 605- 608 F4.1 --- n_[Cr1/Fe] ?=- Number of lines used to compute [Cr/Fe] abundance 610- 630 F21.18 --- [Mn1/Fe] ?=- Abundance [Mn/Fe] abundance 632- 651 F20.18 --- e_[Mn1/Fe] ?=- Error in [Mn/Fe] abundance 653- 655 F3.1 --- o_[Mn1/Fe] ?=- Number of lines used to compute [Mn/Fe] abundance 657- 679 E23.15 --- [Co1/Fe] ?=- Abundance [Co/Fe] 681- 700 F20.18 --- e_[Co1/Fe] ?=- Error in [Co/Fe] abundance 702- 705 F4.1 --- o_[Co1/Fe] ?=- Number of lines used to compute [Co/Fe] abundance 707- 730 E24.16 --- [Ni1/Fe] ?=- Abundance [ni/Fe] 732- 751 F20.18 --- e_[Ni1/Fe] ?=- Error in [Ni/Fe] abundance 753- 756 F4.1 --- n_[Ni1/Fe] ?=- Number of lines used to compute [Ni/Fe] abundance 758- 778 F21.18 --- [Cu1/Fe] ?=- Abundance [Cu/Fe] 780- 799 F20.18 --- e_[Cu1/Fe] ?=- Error in [Cu/Fe] abundance 801- 803 F3.1 --- o_[Cu1/Fe] ?=- Number of lines used to compute [Cu/Fe] abundance 805- 826 E22.14 --- [Zn1/Fe] ?=- Abundance [Zn/Fe] 828- 847 F20.18 --- e_[Zn1/Fe] ?=- Error in [Zn/Fe] abundance 849- 851 F3.1 --- o_[Zn1/Fe] ?=- Number of lines used to compute [Zn/Fe] abundance 853- 874 E22.14 --- [Sr1/Fe] ?=- Abundance [Sr/Fe] 876- 894 F19.17 --- e_[Sr1/Fe] ?=- Error in [Sr/Fe] abundance 896- 898 F3.1 --- o_[Sr1/Fe] ?=- Number of lines used to compute [Sr/Fe] abundance 900- 921 F22.19 --- [Y2/Fe] ?=- Abundance [Y/Fe] 923- 942 F20.18 --- e_[Y2/Fe] ?=- Error in [Y/Fe] abundance 944- 946 F3.1 --- o_[Y2/Fe] ?=- Number of lines used to compute [Y/Fe] abundance 948- 969 F22.19 --- [Zr2/Fe] ?=- Abundance [Zr/Fe] 971- 989 F19.17 --- e_[Zr2/Fe] ?=- Error in [Zr/Fe] abundance 991- 993 F3.1 --- o_[Zr2/Fe] ?=- Number of lines used to compute [Zr/Fe] abundance 995-1015 F21.18 --- [Ba2/Fe] ?=- Abundance [Ba/Fe] 1017-1036 F20.18 --- e_[Ba2/Fe] ?=- Error in [Ba/Fe] abundance 1038-1040 F3.1 --- o_[Ba2/Fe] ?=- Number of lines used to compute [Ba/Fe] abundance 1042-1064 E23.15 --- [Ce2/Fe] ?=- Abundance [Ce/Fe] 1066-1084 F19.17 --- e_[Ce2/Fe] ?=- Error in [Ce/Fe] abundance 1086-1088 F3.1 --- o_[Ce2/Fe] ?=- Number of lines used to compute [Ce/Fe] abundance 1090-1113 E24.16 --- [Nd2/Fe] ?=- Abundance [Nd/Fe] 1115-1134 F20.18 --- e_[Nd2/Fe] ?=- Error in [Nd/Fe] abundance 1136-1138 F3.1 --- o_[Nd2/Fe] ?=- Number of lines used to compute [Nd/Fe] abundance -------------------------------------------------------------------------------- Note (1): Gala Flag provides an estimate of the goodness of the atmospheric parameters determined by equivalent width with GALA, with 1 being the most reliable value and 4 the least reliable. -------------------------------------------------------------------------------- History: From Juan Carbajo-Hijarrubia, juan636(at)fqa.ub.edu Acknowledgements: This work was supported by the MINECO (Spanish Ministry of Economy, Industry and Competitiveness) through grant ESP2016-80079-C2-1-R (MINECO/FEDER, UE) and by the Spanish MICIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" by the 'European Union' through grants RTI2018-095076-B-C21 and PID2021-122842OB-C21, and the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia 'Maria de Maeztu') through grant CEX2019-000918-M. LC acknowledges the grant RYC2021-033762-I funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. GT, ES, and AD acknowledge funding from the Lithuanian Science Council (LMTLT, grant No. P-MIP-23-24). Based on observations made with the Nordic Optical Telescope, owned in collaboration by the University of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku and the University of Oslo, representing Denmark, Finland and Norway, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based on observations obtained with the HERMES spectrograph, which is supported by the Research Foundation - Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Geneve, Switzerland and the Thuringer Landessternwarte Tautenburg, Germany. Based on observations collected at Centro Astronomico Hispano en Andalucia (CAHA) at Calar Alto, operated jointly by Instituto de Astrofisica de Andalucia (CSIC) and Junta de Andalucia. This research has made use of NASA's Astrophysics Data System Bibliographic Services. References: Casamiquela et al., Paper I 2016MNRAS.458.3150C 2016MNRAS.458.3150C, Cat. J/MNRAS/458/3150 Casamiquela et al., Paper II 2018A&A...610A..66C 2018A&A...610A..66C, Cat. J/A+A/610/A66 Casamiquela et al., Paper III 2019MNRAS.490.1821C 2019MNRAS.490.1821C, Cat. J/MNRAS/490/1821 Carrera et al., Paper IV 2022A&A...658A..14C 2022A&A...658A..14C, Cat. J/A+A/658/A14
(End) Patricia Vannier [CDS] 25-Apr-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line