J/A+A/687/A239 Open clusters abundances (Carbajo-Hijarrubia+, 2024)
OCCASO V. Chemical-abundance trends with Galactocentric distance and age.
Carbajo-Hijarrubia J., Casamiquela L., Carrera R., Balaguer-Nunez L.,
Jordi C., Anders F., Gallart C., Pancino E., Drazdauskas A., Stonkute E.,
Tautvaisiene G., Carrasco J.M., Masana E., Cantat-Gaudin T.,
Blanco-Cuaraesma S.
<Astron. Astrophys. 687, A239 (2024)>
=2024A&A...687A.239C 2024A&A...687A.239C (SIMBAD/NED BibCode)
ADC_Keywords: Milky Way ; Clusters, open ; Abundances ; Spectroscopy
Keywords: stars: abundances - Galaxy: abundances - Galaxy: disc -
Galaxy: evolution - Galaxy: open clusters and associations: general
Abstract:
Open clusters provide valuable information on stellar nucleosynthesis
and the chemical evolution of the Galactic disc, as their age and
distances can be measured more precisely with photometry than for
field stars.
Our aim is to study the chemical distribution of the Galactic disc
using open clusters by analysing the existence of gradients with
Galactocentric distance, azimuth or height from the plane and
dependency with age.
High-resolution spectra (R>60000) of 194 stars belonging to 36 open
clusters are used to determine atmospheric parameters and chemical
abundances with two independent methods: equivalent widths and
spectral synthesis. The sample has been complemented with 63 clusters
with high-resolution spectroscopy from literature.
We measure local thermodynamic equilibrium abundances for 21 elements:
alpha (Mg, Si, Ca, and Ti), odd-Z (Na and Al), Fe-peak (Fe, Sc, V, Cr,
Mn, Co, Ni, Cu, and Zn), and neutron-capture (Sr, Y, Zr, Ba, Ce, and
Nd). We also provide non-local thermodynamic equilibrium abundances
for elements when corrections are available. We find inner disc young
clusters enhanced in [Mg/Fe]and [Si/Fe] compared to other clusters of
their age. For [Ba/Fe] we report an age trend flattening for older
clusters (age<2.5Ga). The studied elements follow the expected radial
gradients as a function of their nucleosynthesis groups, which are
significantly steeper for the oldest systems. For the first time, we
investigate the existence of an azimuthal gradient, finding some hints
of its existence among the old clusters (age>2Ga).
Description:
Chemical abundances for 36 open cumulus clusters studied with high
resolution spectroscopy.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 1511 36 Properties of the 36 OCCASO OCs in this work
tablea1.dat 24 1625 Line list for EW
tablea2.dat 13 343 Line list for SS
tablea4.dat 1138 194 Stellar parameters and chemical abundances for
the 194 stars in this work
--------------------------------------------------------------------------------
See also:
J/MNRAS/458/3150 : OCCASO survey. HRV for 12 open clusters (Casamiquela+, 2016)
J/A+A/610/A66 : Equivalent widths of 7 stars in NGC 6705 (Casamiquela+ 2018)
J/MNRAS/490/1821 : Abundances for stars in 18 open clusters (Casamiquela+ 2019)
J/A+A/658/A14 : OCCASO IV. Open cluster stars radial velocities
(Carrera+, 2022)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 16 A16 --- Cluster Cluster Name
18- 24 F7.3 deg RAdeg Right ascension (J2000)
26- 32 F7.3 deg DEdeg Declination (J2000)
34- 52 F19.17 Gyr Age Age
54- 59 F6.1 pc DistPc Distance in pc
61- 67 F7.1 pc X X galactocentric position
69- 75 F7.1 pc Y Y galactocentric position
77- 82 F6.1 pc Z Z galactocentric position
84- 90 F7.1 pc Rgc Galactocentric radius
92- 112 F21.18 --- [Fe/H] Abundance [Fe/H]
114- 134 F21.19 --- e_[Fe/H] Error in [Fe/H] abundance
136- 139 F4.1 --- o_[Fe/H] Number of stars used to compute [Fe/H]
abundance
141- 164 E24.16 --- [Mg1/Fe] Abundance [Mg/Fe]
166- 185 F20.18 --- e_[Mg1/Fe] Error in [Mg/Fe] abundance
187- 190 F4.1 --- o_[Mg1/Fe] Number of stars used to compute [Mg/Fe]
abundance
192- 211 F20.18 --- [Si1/Fe] Abundance [Si/Fe]
213- 232 F20.18 --- e_[Si1/Fe] Error in [Si/Fe] abundance
234- 237 F4.1 --- o_[Si1/Fe] Number of stars used to compute [Si/Fe]
abundance
239- 261 E23.15 --- [Ca1/Fe] Abundance [Ca/Fe]
263- 282 F20.18 --- e_[Ca1/Fe] Error in [Ca/Fe] abundance
284- 287 F4.1 --- o_[Ca1/Fe] Number of stars used to compute [Ca/Fe]
abundance
289- 311 E23.15 --- [Ti1/Fe] Abundance [Ti/Fe]
313- 332 F20.18 --- e_[Ti1/Fe] Error in [Ti/Fe] abundance
334- 337 F4.1 --- o_[Ti1/Fe] Number of stars used to compute [Ti/Fe]
abundance
339- 358 F20.17 --- [Na1/Fe] Abundance [Na/Fe]
360- 379 F20.18 --- e_[Na1/Fe] Error in [Na/Fe] abundance
381- 384 F4.1 --- o_[Na1/Fe] Number of stars used to compute [Na/Fe]
abundance
386- 405 F20.18 --- [Al1/Fe] Abundance [Al/Fe]
407- 426 F20.18 --- e_[Al1/Fe] Error in [Al/Fe] abundance
428- 431 F4.1 --- o_[Al1/Fe] Number of stars used to compute [Al/Fe]
abundance
433- 454 F22.19 --- [Sc2/Fe] Abundance [Sc/Fe]
456- 475 F20.18 --- e_[Sc2/Fe] Error in [Sc/Fe] abundance
477- 480 F4.1 --- o_[Sc2/Fe] Number of stars used to compute [Sc/Fe]
abundance
482- 503 F22.19 --- [V1/Fe] Abundance [V/Fe]
505- 524 F20.18 --- e_[V1/Fe] Error in [V/Fe] abundance
526- 529 F4.1 --- o_[V1/Fe] Number of stars used to compute [V/Fe]
abundance
531- 553 E23.15 --- [Cr1/Fe] Abundance [Cr/Fe]
555- 574 F20.18 --- e_[Cr1/Fe] Error in [Cr/Fe] abundance
576- 579 F4.1 --- o_[Cr1/Fe] Number of stars used to compute [Cr/Fe]
abundance
581- 600 F20.17 --- [Mn1/Fe] Abundance [Mn/Fe]
602- 621 F20.18 --- e_[Mn1/Fe] Error in [Mn/Fe] abundance
623- 626 F4.1 --- o_[Mn1/Fe] Number of stars used to compute [Mn/Fe]
abundance
628- 649 F22.19 --- [Co1/Fe] Abundance [Co/Fe]
651- 670 F20.18 --- e_[Co1/Fe] Error in [Co/Fe] abundance
672- 675 F4.1 --- o_[Co1/Fe] Number of stars used to compute [Co/Fe]
abundance
677- 698 F22.19 --- [Ni1/Fe] Abundance [Ni/Fe] abundance
700- 719 F20.18 --- e_[Ni1/Fe] Error in [Ni/Fe] abundance
721- 724 F4.1 --- o_[Ni1/Fe] Number of stars used to compute [Ni/Fe]
abundance
726- 746 F21.18 --- [Cu1/Fe] Abundance [Cu/Fe]
748- 767 F20.18 --- e_[Cu1/Fe] Error in [Cu/Fe] abundance
769- 772 F4.1 --- o_[Cu1/Fe] Number of stars used to compute [Cu/Fe]
abundance
774- 795 F22.19 --- [Zn1/Fe] ?=- Abundance [Zn/Fe] abundance
797- 816 F20.18 --- e_[Zn1/Fe] ?=- Error in [Zn/Fe] abundance
818- 820 F3.1 --- o_[Zn1/Fe] ?=- Number of stars used to compute [Zn/Fe]
abundance
822- 842 F21.18 --- [Sr1/Fe] Abundance [Sr/Fe]
844- 863 F20.18 --- e_[Sr1/Fe] Error in [Sr/Fe]
865- 867 F3.1 --- o_[Sr1/Fe] Number of stars used to compute [Sr/Fe]
abundance
869- 890 F22.19 --- [Y2/Fe] Abundance [Y/Fe]
892- 911 F20.18 --- e_[Y2/Fe] Error in [Y/Fe] abundance
913- 916 F4.1 --- o_[Y2/Fe] Number of stars used to compute [Y/Fe]
abundance
918- 938 F21.18 --- [Zr2/Fe] Abundance [Zr/Fe]
940- 959 F20.18 --- e_[Zr2/Fe] Error in [Zr/Fe] abundance
961- 964 F4.1 --- o_[Zr2/Fe] Number of stars used to compute [Zr/Fe]
abundance
966- 986 F21.18 --- [Ba2/Fe] Abundance [Ba/Fe]
988-1007 F20.18 --- e_[Ba2/Fe] Error in [Ba/Fe]
1009-1012 F4.1 --- o_[Ba2/Fe] Number of stars used to compute [Ba/Fe]
abundance
1014-1035 F22.19 --- [Ce2/Fe] Abundance [Ce/Fe]
1037-1057 F21.19 --- e_[Ce2/Fe] Error in [Ce/Fe] abundance
1059-1062 F4.1 --- o_[Ce2/Fe] Number of stars used to compute [Ce/Fe]
abundance
1064-1084 F21.18 --- [Pr2/Fe] Abundance [Pr/Fe]
1086-1105 F20.18 --- e_[Pr2/Fe] Error in [Pr/Fe] abundance
1107-1110 F4.1 --- o_[Pr2/Fe] Number of stars used to compute [Pr/Fe]
abundance
1112-1129 F18.16 --- Fe1-NLTE Fe abundance NLTE
1131-1150 F20.18 --- e_Fe1-NLTE Error Fe abundance NLTE
1152-1169 F18.16 --- Mg1-NLTE Mg abundance NLTE
1171-1191 F21.19 --- e_Mg1-NLTE Error Mg abundance NLTE
1193-1210 F18.16 --- Si1-NLTE Si abundance NLTE
1212-1231 F20.18 --- e_Si1-NLTE Error Si abundance NLTE
1233-1250 F18.16 --- Ca1-NLTE Ca abundance NLTE
1252-1271 F20.18 --- e_Ca1-NLTE Error Ca abundance NLTE
1273-1290 F18.16 --- Ti1-NLTE Ti abundance NLTE
1292-1311 F20.18 --- e_Ti1-NLTE Error Ti abundance NLTE
1313-1330 F18.16 --- Na1-NLTE Na abundance NLTE
1332-1351 F20.18 --- e_Na1-NLTE Error Na abundance NLTE
1353-1370 F18.16 --- Cr1-NLTE Cr abundance NLTE
1372-1391 F20.18 --- e_Cr1-NLTE Error Cr abundance NLTE
1393-1410 F18.16 --- Mn1-NLTE Mn abundance NLTE
1412-1431 F20.18 --- e_Mn1-NLTE Error Mn abundance NLTE
1433-1450 F18.16 --- Co1-NLTE Co abundance NLTE
1452-1471 F20.18 --- e_Co1-NLTE Error Co abundance NLTE
1473-1490 F18.16 --- Ba2-NLTE Ba abundance NLTE
1492-1511 F20.18 --- e_Ba2-NLTE Error Ba abundance NLTE
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 18 F18.13 0.1nm lambda Line wavelength
20- 24 F5.2 --- El Element number
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 F8.4 0.1nm lambda Line wavelength
10- 13 A4 --- El Element name
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 16 A16 --- Cluster Cluster name
18- 36 I19 --- GaiaDR3 Gaia DR3 source identifier
38- 52 A15 --- OCCASO OCCASO source identifier
54- 61 F8.3 K Teff ?=- Effective temperature
63- 81 F19.15 K e_Teff ?=- Effective temperature error
83- 87 F5.3 [cm/s2] logg ?=- Surface gravity
89- 107 F19.17 [cm/s2] e_logg ?=- Surface gravity error
109- 111 F3.1 --- Flag [1/4]?=- GALA flag (1)
113- 134 E22.14 --- [Fe/H] ?=- Abundance [Fe/H]
136- 155 F20.18 --- e_[Fe/H] ?=- Error in [Fe/H] abundance
157- 161 F5.1 --- o_[Fe/H] ?=- Number of lines used to compute [Fe/H]
abundance
163- 185 E23.15 --- [Mg1/Fe] ?=- Abundance [Mg/Fe]
187- 206 F20.18 --- e_[Mg1/Fe] ?=- Error in [Mg/Fe] abundance
208- 210 F3.1 --- o_[Mg1/Fe] ?=- Number of lines used to compute [Mg/Fe]
abundance
212- 232 F21.18 --- [Si1/Fe] ?=- Abundance [Si/Fe]
234- 253 F20.18 --- e_[Si1/Fe] ?=- Error in [Si/Fe] abundance
255- 258 F4.1 --- o_[Si1/Fe] ?=- Number of lines used to compute [Si/Fe]
abundance
260- 282 E23.15 --- [Ca1/Fe] ?=- Abundance [Ca/Fe]
284- 303 F20.18 --- e_[Ca1/Fe] ?=- Error in [Ca/Fe] abundance
305- 308 F4.1 --- o_[Ca1/Fe] ?=- Number of lines used to compute [Ca/Fe]
abundance
310- 333 E24.16 --- [Ti1/Fe] ?=- Abundance [Ti/Fe]
335- 354 F20.18 --- e_[Ti1/Fe] ?=- Error in [Ti/Fe] abundance
356- 359 F4.1 --- n_[Ti1/Fe] ?=- Number of lines used to compute [Ti/Fe]
abundance
361- 382 F22.19 --- [Na1/Fe] ?=- Abundance [Na/Fe]
384- 403 F20.18 --- e_[Na1/Fe] ?=- Error in [Na/Fe] abundance
405- 407 F3.1 --- o_[Na1/Fe] ?=- Number of lines used to compute [Na/Fe]
abundance
409- 432 E24.16 --- [Al1/Fe] ?=- Abundance [Al/Fe]
434- 453 F20.18 --- e_[Al1/Fe] ?=- Error in [Al/Fe] abundance
455- 457 F3.1 --- o_[Al1/Fe] ?=- Number of lines used to compute [Al/Fe]
abundance
459- 482 E24.16 --- [Sc2/Fe] ?=- Abundance [Sc/Fe]
484- 503 F20.18 --- e_[Sc2/Fe] ?=- Error in [Sc/Fe] abundance
505- 508 F4.1 --- o_[Sc2/Fe] ?=- Number of lines used to compute [Sc/Fe]
abundance
510- 533 E24.16 --- [V1/Fe] ?=- Abundance [V/Fe]
535- 554 F20.18 --- e_[V1/Fe] ?=- Error in [V/Fe] abundance
556- 559 F4.1 --- o_[V1/Fe] ?=- Number of lines used to compute [V/Fe]
abundance
561- 582 F22.19 --- [Cr1/Fe] ?=- Abundance [Cr/Fe]
584- 603 F20.18 --- e_[Cr1/Fe] ?=- Error in [Cr/Fe] abundance
605- 608 F4.1 --- n_[Cr1/Fe] ?=- Number of lines used to compute [Cr/Fe]
abundance
610- 630 F21.18 --- [Mn1/Fe] ?=- Abundance [Mn/Fe] abundance
632- 651 F20.18 --- e_[Mn1/Fe] ?=- Error in [Mn/Fe] abundance
653- 655 F3.1 --- o_[Mn1/Fe] ?=- Number of lines used to compute [Mn/Fe]
abundance
657- 679 E23.15 --- [Co1/Fe] ?=- Abundance [Co/Fe]
681- 700 F20.18 --- e_[Co1/Fe] ?=- Error in [Co/Fe] abundance
702- 705 F4.1 --- o_[Co1/Fe] ?=- Number of lines used to compute [Co/Fe]
abundance
707- 730 E24.16 --- [Ni1/Fe] ?=- Abundance [ni/Fe]
732- 751 F20.18 --- e_[Ni1/Fe] ?=- Error in [Ni/Fe] abundance
753- 756 F4.1 --- n_[Ni1/Fe] ?=- Number of lines used to compute [Ni/Fe]
abundance
758- 778 F21.18 --- [Cu1/Fe] ?=- Abundance [Cu/Fe]
780- 799 F20.18 --- e_[Cu1/Fe] ?=- Error in [Cu/Fe] abundance
801- 803 F3.1 --- o_[Cu1/Fe] ?=- Number of lines used to compute [Cu/Fe]
abundance
805- 826 E22.14 --- [Zn1/Fe] ?=- Abundance [Zn/Fe]
828- 847 F20.18 --- e_[Zn1/Fe] ?=- Error in [Zn/Fe] abundance
849- 851 F3.1 --- o_[Zn1/Fe] ?=- Number of lines used to compute [Zn/Fe]
abundance
853- 874 E22.14 --- [Sr1/Fe] ?=- Abundance [Sr/Fe]
876- 894 F19.17 --- e_[Sr1/Fe] ?=- Error in [Sr/Fe] abundance
896- 898 F3.1 --- o_[Sr1/Fe] ?=- Number of lines used to compute [Sr/Fe]
abundance
900- 921 F22.19 --- [Y2/Fe] ?=- Abundance [Y/Fe]
923- 942 F20.18 --- e_[Y2/Fe] ?=- Error in [Y/Fe] abundance
944- 946 F3.1 --- o_[Y2/Fe] ?=- Number of lines used to compute [Y/Fe]
abundance
948- 969 F22.19 --- [Zr2/Fe] ?=- Abundance [Zr/Fe]
971- 989 F19.17 --- e_[Zr2/Fe] ?=- Error in [Zr/Fe] abundance
991- 993 F3.1 --- o_[Zr2/Fe] ?=- Number of lines used to compute [Zr/Fe]
abundance
995-1015 F21.18 --- [Ba2/Fe] ?=- Abundance [Ba/Fe]
1017-1036 F20.18 --- e_[Ba2/Fe] ?=- Error in [Ba/Fe] abundance
1038-1040 F3.1 --- o_[Ba2/Fe] ?=- Number of lines used to compute [Ba/Fe]
abundance
1042-1064 E23.15 --- [Ce2/Fe] ?=- Abundance [Ce/Fe]
1066-1084 F19.17 --- e_[Ce2/Fe] ?=- Error in [Ce/Fe] abundance
1086-1088 F3.1 --- o_[Ce2/Fe] ?=- Number of lines used to compute [Ce/Fe]
abundance
1090-1113 E24.16 --- [Nd2/Fe] ?=- Abundance [Nd/Fe]
1115-1134 F20.18 --- e_[Nd2/Fe] ?=- Error in [Nd/Fe] abundance
1136-1138 F3.1 --- o_[Nd2/Fe] ?=- Number of lines used to compute [Nd/Fe]
abundance
--------------------------------------------------------------------------------
Note (1): Gala Flag provides an estimate of the goodness of the atmospheric
parameters determined by equivalent width with GALA,
with 1 being the most reliable value and 4 the least reliable.
--------------------------------------------------------------------------------
History:
From Juan Carbajo-Hijarrubia, juan636(at)fqa.ub.edu
Acknowledgements:
This work was supported by the MINECO (Spanish Ministry of Economy,
Industry and Competitiveness) through grant ESP2016-80079-C2-1-R
(MINECO/FEDER, UE) and by the Spanish MICIN/AEI/10.13039/501100011033
and by "ERDF A way of making Europe" by the 'European Union'
through grants RTI2018-095076-B-C21 and PID2021-122842OB-C21, and the
Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de
Excelencia 'Maria de Maeztu') through grant CEX2019-000918-M.
LC acknowledges the grant RYC2021-033762-I funded by
MCIN/AEI/10.13039/501100011033 and by the European Union
NextGenerationEU/PRTR. GT, ES, and AD acknowledge funding from the
Lithuanian Science Council (LMTLT, grant No. P-MIP-23-24).
Based on observations made with the Nordic Optical Telescope, owned in
collaboration by the University of Turku and Aarhus University, and
operated jointly by Aarhus University, the University of Turku and the
University of Oslo, representing Denmark, Finland and Norway, the
University of Iceland and Stockholm University at the Observatorio del
Roque de los Muchachos, La Palma, Spain, of the Instituto de
Astrofisica de Canarias.
Based on observations made with the Mercator Telescope, operated on
the island of La Palma by the Flemish Community, at the Spanish
Observatorio del Roque de los Muchachos of the Instituto de
Astrofisica de Canarias. Based on observations obtained with the
HERMES spectrograph, which is supported by the Research Foundation -
Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium,
the Fonds National de la Recherche Scientifique (F.R.S.-FNRS),
Belgium, the Royal Observatory of Belgium, the Observatoire de
Geneve, Switzerland and the Thuringer Landessternwarte Tautenburg,
Germany. Based on observations collected at Centro Astronomico
Hispano en Andalucia (CAHA) at Calar Alto, operated jointly by
Instituto de Astrofisica de Andalucia (CSIC) and Junta de
Andalucia. This research has made use of NASA's Astrophysics Data
System Bibliographic Services.
References:
Casamiquela et al., Paper I 2016MNRAS.458.3150C 2016MNRAS.458.3150C, Cat. J/MNRAS/458/3150
Casamiquela et al., Paper II 2018A&A...610A..66C 2018A&A...610A..66C, Cat. J/A+A/610/A66
Casamiquela et al., Paper III 2019MNRAS.490.1821C 2019MNRAS.490.1821C, Cat. J/MNRAS/490/1821
Carrera et al., Paper IV 2022A&A...658A..14C 2022A&A...658A..14C, Cat. J/A+A/658/A14
(End) Patricia Vannier [CDS] 25-Apr-2024