J/A+A/687/A69 HD spectra in H2-He for gas giant studies (Jozwiak+, 2024)
Accurate reference spectra of HD in an H2-He bath for planetary applications.
Jozwiak H., Stolarczyk N., Stankiewicz K., Zaborowski M., Lisak D.,
Wojtewicz Sz., Jankowski P., Patkowski K., Szalewicz K., Thibault F.,
Gordon I.E., Wcislo P.
<Astron. Astrophys. 687, A69 (2024)>
=2024A&A...687A..69J 2024A&A...687A..69J (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics ; Spectroscopy
Keywords: atomic data - molecular data - line: profiles - scattering -
planets and satellites: atmospheres
Abstract:
The hydrogen deuteride (HD) molecule is an important deuterium tracer
in astrophysical studies. The atmospheres of gas giants are dominated
by molecular hydrogen, and the simultaneous observation of H2 and HD
lines provides reliable information on the D/H ratios on these
planets. The reference spectroscopic parameters play a crucial role in
such studies. Under the thermodynamic conditions encountered in these
atmospheres, spectroscopic studies of HD require not only the
knowledge of line intensities and positions but also accurate
reference data on pressure-induced line shapes and shifts.
Our aim is to provide accurate collision-induced line-shape parameters
for HD lines that cover any thermodynamic conditions relevant to the
atmospheres of giant planets, namely any relevant temperature,
pressure, and perturbing gas composition (the H2-He mixture).
We performed quantum-scattering calculations on our new, highly
accurate ab initio potential energy surface (PES), and we used
scattering S matrices obtained in this way to determine the
collision-induced line-shape parameters. We used cavity ring-down
spectroscopy to validate our theoretical methodology.
We report accurate collision-induced line-shape parameters for the
pure rotational R(0), R(1), and R(2) lines, the most relevant HD lines
for investigations of the atmospheres of the giant planets. Besides
the basic Voigt-profile collisional parameters (i.e., the broadening
and shift parameters), we also report their speed dependences and the
complex Dicke parameter, which can influence the effective width and
height of the HD lines up to almost a factor of 2 for giant planet
conditions. The sub-percent-level accuracy reached in this work is a
considerable improvement over previously available data. All the
reported parameters (and their temperature dependences) are consistent
with the HITRAN database format, hence allowing for the use of the
HITRAN Application Programming Interface (HAPI) for generating the
beyond-Voigt spectra of HD.
Description:
This data set supports the main article by providing detailed ab
initio generalized spectroscopic cross-sections and temperature
dependencies of six line-shape parameters for the modified
Hartmann-Tran (mHT) profile in the R(0), R(1), and R(2) lines of HD,
perturbed by H2 and He.
1. Generalized Spectroscopic Cross-Sections:
Tables 'table1*.dat', 'table3*.dat', 'table5*.dat' include generalized
spectroscopic cross-sections for various rotational levels of the
perturbing H2 molecule (j=0, 1, 2, 3, 4, and 5). Refer to Eq. (12)
in Olejnik et al., 2023, J. Chem. Phys. 159, 134301,
doi: 10.1063/5.0169968) for the definition of generalized spectroscopic
cross-sections.
Tables 'table2.dat', 'table4.dat', 'table6.dat' provide generalized
spectroscopic cross-sections for R(0), R(1), and R(2) lines of HD
perturbed by He.
2. Line-Shape Parameters:
Files ('table7.dat' - 'table12.dat') provide the temperature dependence
of six line-shape parameters of the mHT profile as defined in
Eqs. (1-3) of the main paper.
3. H2-Perturbed 2-0 S(2) Line in D2:
Specific data for the H2-perturbed 2-0 S(2) line in D2 is also included
('table13*.dat' and 'table14.dat'), detailing generalized spectroscopic
cross-sections for six levels of the perturbing H2 molecules and six
line-shape parameters at two experimental temperatures (296 and 330 K).
Each data file ('table*.dat') includes a header in the first line for
guidance.
Finally, we provide a set of spectral line-shape parameters of HD
perturbed by He and H2 in the HITRAN DPL format.
'hapi_HD.header' and 'hapi_HD.data' files, readily compatible with
the HAPI library (see Sec. 3 of the main paper for details).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1a.dat 165 867 GSXS for R(0) 0-0 line in HD + H2(j=0)
table1b.dat 165 894 GSXS for R(0) 0-0 line in HD + H2(j=1)
table1c.dat 165 562 GSXS for R(0) 0-0 line in HD + H2(j=2)
table1d.dat 165 509 GSXS for R(0) 0-0 line in HD + H2(j=3)
table1e.dat 165 263 GSXS for R(0) 0-0 line in HD + H2(j=4)
table1f.dat 165 254 GSXS for R(0) 0-0 line in HD + H2(j=5)
table2.dat 153 259 GSXS for R(0) 0-0 line in HD + He
table3a.dat 165 834 GSXS for R(1) 0-0 line in HD + H2(j=0)
table3b.dat 165 502 GSXS for R(1) 0-0 line in HD + H2(j=1)
table3c.dat 165 528 GSXS for R(1) 0-0 line in HD + H2(j=2)
table3d.dat 165 270 GSXS for R(1) 0-0 line in HD + H2(j=3)
table3e.dat 165 274 GSXS for R(1) 0-0 line in HD + H2(j=4)
table3f.dat 165 231 GSXS for R(1) 0-0 line in HD + H2(j=5)
table4.dat 153 259 GSXS for R(1) 0-0 line in HD + He
table5a.dat 165 752 GSXS for R(2) 0-0 line in HD + H2(j=0)
table5b.dat 165 501 GSXS for R(2) 0-0 line in HD + H2(j=1)
table5c.dat 165 528 GSXS for R(2) 0-0 line in HD + H2(j=2)
table5d.dat 165 270 GSXS for R(2) 0-0 line in HD + H2(j=3)
table5e.dat 165 274 GSXS for R(2) 0-0 line in HD + H2(j=4)
table5f.dat 165 265 GSXS for R(2) 0-0 line in HD + H2(j=5)
table6.dat 153 259 GSXS for R(2) 0-0 line in HD + He
table7.dat 98 197 Parameters for R(0) 0-0 line in HD + H2
table8.dat 98 197 Parameters for R(0) 0-0 line in HD + He
table9.dat 98 197 Parameters for R(1) 0-0 line in HD + H2
table10.dat 98 197 Parameters for R(1) 0-0 line in HD + He
table11.dat 98 197 Parameters for R(2) 0-0 line in HD + H2
table12.dat 98 197 Parameters for R(2) 0-0 line in HD + He
table13a.dat 165 1018 GSXS for S(2) 2-0 line in D2 + H2(j=0)
table13b.dat 165 1036 GSXS for S(2) 2-0 line in D2 + H2(j=1)
table13c.dat 165 797 GSXS for S(2) 2-0 line in D2 + H2(j=2)
table13d.dat 165 798 GSXS for S(2) 2-0 line in D2 + H2(j=3)
table13e.dat 165 260 GSXS for S(2) 2-0 line in D2 + H2(j=4)
table13f.dat 165 235 GSXS for S(2) 2-0 line in D2 + H2(j=5)
table14.dat 98 2 Parameters for S(2) 2-0 line in D2 + H2
hapi_HD.data . 80 File readily compatible with the HAPI library
hapi_HD.header 138 228 File readily compatible with the HAPI library
--------------------------------------------------------------------------------
Byte-by-byte Description of file (#): table1*[abcdef].dat table[35]?.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
3 I1 --- q Tensorial rank of the transition (R:q=1, S:q=2)
9 I1 --- vi Bottom vibrational level of the active molecule
15 I1 --- ji Bottom rotational level of the active molecule
21 I1 --- vf Top vibrational level of the active molecule
27 I1 --- jf Top rotational level of the active molecule
33 I1 --- v2 Initial vibrational level of the perturber (H2)
39 I1 --- j2 Initial rotational level of the perturber (H2)
50- 60 E11.5 cm-1 Ekin Relative kinetic energy
71- 81 E11.5 10-2nm+2 Inel Contribution to PBXS from inelastic events
(in Å2 unit)
92-102 E11.5 10-2nm+2 PBXS Pressure broadening cross-section
(in Å2 unit)
112-123 E12.5 10-2nm+2 PSXS Pressure shift cross-section (in Å2 unit)
134-144 E11.5 10-2nm+2 RDXS Real part of the Dicke cross-section
(in Å2 unit)
154-165 E12.5 10-2nm+2 IDXS Imaginary part of the Dicke cross-section
(in Å2 unit)
--------------------------------------------------------------------------------
Byte-by-byte Description of file (#): table2.dat table4.dat table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
3 I1 --- q Tensorial rank of the transition (R:q=1, S:q=2)
9 I1 --- vi Initial vibrational level of the active molecule
15 I1 --- ji Initial rotational level of the active molecule
21 I1 --- vf Final vibrational level of the active molecule
27 I1 --- jf Final rotational level of the active molecule
38- 48 E11.5 cm-1 Ekin Relative kinetic energy
59- 69 E11.5 10-2nm+2 Inel Contribution to PBXS from inelastic events
(in Å2 unit)
80- 90 E11.5 10-2nm+2 PBXS Pressure broadening cross-section
(in Å2 unit)
100-111 E12.5 10-2nm+2 PSXS Pressure shift cross-section
(in Å2 unit)
122-132 E11.5 10-2nm+2 RDXS Real part of the Dicke cross-section
(in Å2 unit)
142-153 E12.5 10-2nm+2 IDXS Imaginary part of the Dicke cross-section
(in Å2 unit)
--------------------------------------------------------------------------------
Byte-by-byte Description of file (#): table[789].dat table1[0124].dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
15- 23 F9.4 K T Temperature
29- 35 F7.4 10-3cm-1.atm-1 gamma-0 Pressure broadening coefficient
41- 47 F7.4 10-3cm-1.atm-1 delta-0 Pressure shift coefficient
53- 59 F7.4 10-3cm-1.atm-1 gamma-2 Quadratic speed dependence
of broadenning
65- 71 F7.4 10-3cm-1.atm-1 delta_2 Quadratic speed dependence of shift
79- 86 F8.4 10-3cm-1.atm-1 Re(nu-opt) Dicke parameter (real part)
92- 98 F7.4 10-3cm-1.atm-1 Im(nu-opt) Dicke parameter (imaginary part)
--------------------------------------------------------------------------------
History:
From Hubert Jozwiak, hubert.jozwiak(at)umk.pl
Nikodem Stolarczyk, nikodem.stolarczyk(at)umk.pl
Acknowledgements:
H.J. and N.S. were supported by the National Science Centre in Poland
through Project No. 2019/35/B/ST2/01118. H.J. was supported by the
Foundation for Polish Science (FNP). K.S contribution is supported by
budgetary funds within the Minister of Education and Science program
"Perly Nauki", Project No. PN/01/0196/2022. D.L. was supported by the
National Science Centre in Poland through Project No.
2020/39/B/ST2/00719. S.W. was supported by the National Science Centre
in Poland through Project No. 2021/42/E/ST2/00152. P.J. was supported
by the National Science Centre in Poland through Project No.
2017/25/B/ST4/01300. K.P. was supported by the U.S. National Science
Foundation award CHE-1955328. K.Sz. was supported by the US NSF award
CHE-2313826. I.E.G.'s contribution was supported through NASA grant
80NSSC24K0080. P.W. was supported by the National Science Centre in
Poland through Project No. 2022/46/E/ST2/00282. We gratefully
acknowledge Polish high-performance computing infrastructure PLGrid
(HPC Centers: ACK Cyfronet AGH, CI TASK) for providing computer
facilities and support within the computational grant, Grant No.
PLG/2023/016409. Calculations have been carried out using resources
provided by the Wroclaw Centre for Networking and Supercomputing
(http://wcss.pl), Grant No. 546. The research is a part of the program
of the National Laboratory FAMO in Torun, Poland.
(End) Patricia Vannier [CDS] 26-Apr-2024