J/A+A/689/A34        Efficiency of black hole formation         (Vergara+, 2024)

Efficiency of black hole formation via collisions in stellar systems: Data analysis from simulations and observations. Vergara M.C., Schleicher D.R.G., Escala A., Reinoso B., Flammini Dotti F., Kamlah A.W.H., Liempi M., Hoyer N., Neumayer N., Spurzem R. <Astron. Astrophys. 689, A34 (2024)> =2024A&A...689A..34V 2024A&A...689A..34V (SIMBAD/NED BibCode)
ADC_Keywords: Models ; Black holes ; QSOs ; Associations, stellar ; Stars, masses Keywords: galaxies: clusters: general - galaxies: nuclei - quasars: supermassive black holes Abstract: This paper explores the theoretical relation between star clusters and black holes within, focusing on the potential role of Nuclear Star Clusters (NSCs), Globular Clusters (GCs), and Ultra Compact Dwarf Galaxies (UCDs) as environments that lead to black hole formation through stellar collisions. The study aims to identify optimal conditions for stellar collisions in different stellar systems leading to the formation of very massive stars that subsequently collapse into black holes. Data from numerical simulations and observations of diverse stellar systems are analyzed, encompassing various initial conditions, initial mass functions, and stellar evolution scenarios. We compute a critical mass, determined by the interplay of collision time, system age, and initial properties of the star cluster. The efficiency of black hole formation (εBH) is defined as the ratio of initial stellar mass divided by critical mass. The study finds out that stellar systems with a ratio of initial stellar mass over critical mass above 1 exhibit high efficiencies of black hole formation, ranging from 30-100%. While there is some scatter, potentially attributed to complex system histories and the presence of gas, the results highlight the potential for achieving high efficiencies through a purely collisional channel in black hole formation. In conclusion, this theoretical exploration elucidates the connection between star clusters and black hole formation. The study underscores the significance of UCDs, GCs, and NSCs as environments conducive to stellar collisions leading to black hole formation. The defined black hole formation efficiency (εBH) is shown to be influenced by the ratio of initial stellar mass to critical mass. Description: Summary of the initial conditions for the different sets of simulations. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 66 164 Initial conditions for simulation sets table2.dat 69 28 Initial conditions for simulation sets with external potential -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 F9.2 Msun Mini Initial mass 14- 18 F5.3 pc Rh Half-Mass radius 26- 32 I7 --- N Number of stars 34- 41 F8.2 Msun MBH Black hole mass 47- 53 F7.2 Myr tau Simulation time 55- 58 A4 --- Code Code name (G1) 62- 66 A5 --- Ref Reference (G2) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 I5 Msun Mini Initial mass 17- 20 F4.2 pc Rh Half-Mass radius 29- 32 I4 --- N Number of stars 35- 38 I4 Msun MBH Black hole mass 48- 52 F5.2 Myr tau Simulation time 55- 57 F3.1 --- q Mass ratio between gas and stars 60- 62 A3 --- Code Code name (G1) 66- 69 A4 --- Ref Reference (G2) -------------------------------------------------------------------------------- Global notes: Note (G1): Code as follows: B = bridge SL = starlab NB6 = nbody6 NB6+ = nbody6++gpu BF = bifrost Note (G2): References as follows: P+99 = Portegies Zwart et al. (1999A&A...348..117P 1999A&A...348..117P) F+13 = Fujii & Portegies Zwart (2013MNRAS.430.1018F 2013MNRAS.430.1018F) K+15 = Katz et al. (2015MNRAS.451.2352K 2015MNRAS.451.2352K) M+16 = Mapelli (2016MNRAS.459.3432M 2016MNRAS.459.3432M) S+17 = Sakurai et al. (2017MNRAS.472.1677S 2017MNRAS.472.1677S) R+18 = Reinoso et al. (2018A&A...614A..14R 2018A&A...614A..14R) P+19 = Panamarev et al. (2019MNRAS.484.3279P 2019MNRAS.484.3279P) R+20 = Reinoso et al. (2020A&A...639A..92R 2020A&A...639A..92R) V+21 = Vergara et al. (2021A&A...649A.160V 2021A&A...649A.160V) V+23 = Vergara et al. (2023MNRAS.522.4224V 2023MNRAS.522.4224V) AS+23 = Arca Sedda et al. (2023, arXiv e-prints, arXiv:2307.04805, arXiv:2307.04806, arXiv:2307.04807) R+23 = Rizzuto et al. (2023MNRAS.521.2930R 2023MNRAS.521.2930R) -------------------------------------------------------------------------------- Acknowledgements: Marcelo C. Vergara, marcelo.c.vergara(at)uni-heidelberg.de
(End) Marcelo C. Vergara [Univ. Heidelberg], Patricia Vannier [CDS] 10-Jun-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line