J/A+A/690/A334 Restricted sample of Gaia-ESO open clusters (Palla+, 2024)
Mapping radial abundance gradients with Gaia-ESO open clusters.
Evidence of recent gas accretion in the Milky Way disk.
Palla M., Magrini L, Spitoni E., Matteucci F., Viscasillas Vazquez C.,
Franchini M., Molero M., Randich S.
<Astron. Astrophys. 690, A334 (2024)>
=2024A&A...690A.334P 2024A&A...690A.334P (SIMBAD/NED BibCode)
ADC_Keywords: Milky Way ; Clusters, open ; Abundances ; Spectroscopy
Keywords: stars: abundances - Galaxy: abundances - Galaxy: disk -
Galaxy: evolution - open clusters and associations: general
Abstract:
Recent evidence from spectroscopic surveys points towards the presence
of a metal-poor, young stellar population in the low-alpha, chemically
thin disk. In this context, the investigation of the spatial
distribution and time evolution of precise, unbiased abundances is
fundamental to disentangle the scenarios of formation and evolution of
the Galaxy. We study the evolution of abundance gradients in the Milky
Way by taking advantage of a large sample of open star clusters, which
are among the best tracers for this purpose. In particular, we used
data from the last release of the Gaia-ESO survey.
We performed a careful selection of open cluster member stars,
excluding those members that may be affected by biases in spectral
analysis. We compared the cleaned open cluster sample with detailed
chemical evolution models for the Milky Way, using well-tested stellar
yields and prescription for radial migration. We tested different
scenarios of Galaxy evolution to explain the data, namely, the
two-infall and the three-infall frameworks, which suggest the chemical
thin disk is formed by one or two subsequent gas accretion episodes,
respectively.
With the performed selection in cluster member stars, we still find a
metallicity decrease between intermediate-age (1<Age/Gyr<3) and
young (Age<1Gyr) open clusters. This decrease cannot be explained
in the context of the two-infall scenario, even by accounting for the
effect of migration and yield prescriptions. The three-infall
framework, with its late gas accretion in the last 3Gyr, is able to
explain the low metallic content in young clusters. However, we have
invoked a milder metal dilution for this gas infall episode relative
to previous findings.
To explain the observed low metallic content in young clusters, we
propose that a late gas accretion episode triggering a metal dilution
would have taken place, extending the framework of the three-infall
model for the first time to the entire Galactic disk.
Description:
We present mean chemical abundances, age (Viscasillas Vazquez et al.,
2022A&A...660A.135V 2022A&A...660A.135V, cat. J/A+A/660/A135), distances and orbital
parameters for the adopted 'restricted sample', namely with a
selection of members with log(g)>2.5 and xi<1.8km/s, of Gaia-ESO
open clusters (from Magrini et al., 2023A&A...669A.119M 2023A&A...669A.119M, Cat.
J/A+A/669/A119).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablec1.dat 247 54 Abundance, ages, distances and orbital parameters
for clusters in the 'restricted sample'
--------------------------------------------------------------------------------
See also:
J/A+A/660/A135 : 62 Galactic open clusters abundances
(Viscasillas Vazquez+, 2022)
J/A+A/669/A119 : Radial abundance gradient with open clusters (Magrini+, 2023)
Byte-by-byte Description of file: tablec1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- GES-OC GES open cluster ID
12- 16 F5.2 [-] [Fe/H] Mean metallicity
18- 21 F4.2 [-] A(O) ? Mean Oxygen abundance (1)
23- 26 F4.2 [-] A(Mg) Mean Magnesium abundance (1)
28- 31 F4.2 [-] A(Al) ? Mean Allumium abundance (1)
33- 36 F4.2 [-] A(Si) Mean Silicon abundance (1)
38- 41 F4.2 [-] A(Ca) Mean Calcium abundance (1)
43- 46 F4.2 [-] A(Sc) Mean Scandium abundance (1)
48- 51 F4.2 [-] A(Ti) Mean Titanium abundance (1)
53- 56 F4.2 [-] A(V) Mean Vanadium abundance (1)
58- 61 F4.2 [-] A(Cr) Mean Chromium abundance (1)
63- 66 F4.2 [-] A(Mn) ? Mean Manganese abundance (1)
68- 71 F4.2 [-] A(Co) ? Mean Cobalt abundance (1)
73- 76 F4.2 [-] A(Ni) Mean Nickel abundance (1)
78- 81 F4.2 [-] A(Cu) ? Mean Copper abundance (1)
83- 86 F4.2 [-] A(Zn) Mean Zinc abundance (1)
88- 91 F4.2 [-] A(Y) Mean Yttrium abundance (1)
93- 96 F4.2 [-] A(ZrI) ? Mean Zirconium abundance (1)(2)
98-101 F4.2 [-] A(ZrII) ? Mean Zirconium abundance (1)(2)
103-106 F4.2 [-] A(Mo) ? Mean Molybdenum abundance (1)
108-111 F4.2 [-] A(Ba) Mean Barium abundance (1)
113-116 F4.2 [-] A(La) ? Mean Lathanum abundance (1)
118-121 F4.2 [-] A(Ce) ? Mean Cerium abundance (1)
123-126 F4.2 [-] A(Pr) ? Mean Praseodynium abundance (1)
128-131 F4.2 [-] A(Nd) ? Mean Neodinium abundance (1)
133-136 F4.2 [-] A(Eu) ? Mean Europium abundance (1)
138-141 F4.2 Gyr Age Cluster age
143-149 F7.2 km/s U Galactic space velocity U component
151-156 F6.2 km/s V Galactic space velocity V component
158-163 F6.2 km/s W Galactic space velocity W component
165-173 F9.2 pc x Galactocentric coordinate x component
175-182 F8.2 pc y Galactocentric coordinate y component
184-191 F8.2 pc z Galactocentric coordinate z component
193-197 F5.2 kpc Rgc Galactocentric radius
199-203 F5.2 kpc Rguide Orbit guiding radius
205-208 F4.2 --- ecc Orbit eccentricity
210-213 F4.2 kpc Zmax Orbit maximum height
215-221 F7.2 km/s.kpc Lp Orbital angular momentum p component
223-228 F6.2 km/s.kpc Lr Orbital angular momentum r component
230-237 F8.2 km/s.kpc Lz Orbital angular momentum z component
239-247 F9.2 km2/s2 E Orbital energy
--------------------------------------------------------------------------------
Note (1): abundances are expressed in log(X/H)+12
Note (2): I and II are meant to be neutral and single ionized abundance
-------------------------------------------------------------------------------
Acknowledgements:
Marco Palla, marco.palla(at)inaf.it
Laura Magrini, laura.magrini(at)inaf.it
Carlos Viscasillas Vazquez, carlos.vasquez(at)ff.vu.lt
(End) Marco Palla [UniBo, Italy], Patricia Vannier [CDS] 19-Sep-2024