J/A+A/692/A228      GES Catalogue HR10 & HR21 with cINN        (Candebat+, 2024)

Inferring stellar parameters and their uncertainties from high-resolution spectroscopy using invertible neural networks. Candebat N., Sacco G.G., Magrini L., Belfiore F., Van der Swaelmen M., Zibetti S. <Astron. Astrophys. 692, A228 (2024)> =2024A&A...692A.228C 2024A&A...692A.228C (SIMBAD/NED BibCode)
ADC_Keywords: Surveys ; Stars, fundamental ; Abundances ; Effective temperatures ; Optical ; Radial velocities ; Keywords: methods: data analysis - methods: numerical - techniques: spectroscopic - surveys - stars: abundances - stars: fundamental parameters Abstract: New spectroscopic surveys will increase the number of astronomical objects in need of characterisation by more than an order of magnitude. Machine learning tools are required to address this data deluge in a fast and accurate fashion. Most machine learning algorithms cannot directly estimate error, making them unsuitable for reliable science.We aim to train a supervised deep-learning algorithm tailored for high-resolution observational stellar spectra. This algorithm accurately infers precise estimates while providing coherent estimates of uncertainties by leveraging information from both the neural network and the spectra.We trained a conditional invertible neural network (cINN) on observational spectroscopic data obtained from the GIRAFFE spectrograph (HR10 and HR21 setups) within the Gaia-ESO survey. A key feature of cINN is its ability to produce the Bayesian posterior distribution of parameters for each spectrum. By analysing this distribution, we inferred stellar parameters and their corresponding uncertainties. We carried out several tests to investigate how parameters are inferred and errors are estimated.We achieved an accuracy of 28K in Teff, 0.06dex in logg, 0.03dex in [Fe/H], and between 0.05dex and 0.17dex for the other abundances for high-quality spectra. Accuracy remains stable with low signal-to-noise ratio (between 5 and 25) spectra, with an accuracy of 39K in Teff, 0.08dex in logg, and 0.05dex in [Fe/H]. The uncertainties obtained are well within the same order of magnitude. The network accurately reproduces astrophysical relationships both on the scale of the Milky Way and within smaller star clusters. We created a table containing the new parameters generated by our cINN.This neural network represents a compelling proposition for future astronomical surveys. These derived uncertainties are coherent and can therefore be reused in future works as Bayesian priors. Description: This analysis focuses on estimating the physical parameters of stars observed with the GIRAFE instrument in the HR10 and HR21 configurations. The training data for this model comes from the catalog published by Hourihane et al. (2023A&A...676A.129H 2023A&A...676A.129H, Cat. J/A+A/676/A129), which provides labeled spectra for a large sample of stars. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file catalog.dat 806 49858 GES 5.1 for HR10 & HR21 by OssicoNN -------------------------------------------------------------------------------- See also: J/A+A/676/A129 : Gaia-ESO catalogue version 5.1 (Hourihane+, 2023) Byte-by-byte Description of file: catalog.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Object GES object name from coordinates 18- 54 A37 --- Setup Grating setups used for analysis 56- 59 A4 --- RecWG Working group deriving the recommended parameters 61- 72 A12 --- GESField GES field name from CASU 74- 94 E21.16 --- MEM3D ? Membership probability 96-116 F21.16 --- SNR SNR of the spectrum used for deriving radial velocities (1) 118-138 F21.16 km/s RV ? Radial Velocity (1) 140-156 F17.12 K Teff Effective Temperature (1) 158-176 F19.15 K e_Teff Error on Teff (1) 178-195 F18.16 [cm/s2] logg Log Surface Gravity (1) 197-214 F18.16 [cm/s2] e_logg Error on logg (1) 216-234 F19.16 --- [Fe/H] ? Metallicity (1) 236-253 F18.16 --- e_[Fe/H] ? Error on [Fe/H] (1) 255-272 F18.16 --- Al1 ? Neutral Aluminium abundance (1) 274-291 F18.16 --- e_Al1 ? Error on AL1 293-311 F19.16 --- Mg1 ? Neutral Magnesium abundance (1) 313-330 F18.16 --- e_Mg1 ? Error on MG1 332-349 F18.16 --- Ca1 ? Neutral Calcium abundance (1) 351-368 F18.16 --- e_Ca1 ? Error on CA1 370-387 F18.16 --- Ti1 ? Neutral Titanium abundance (1) 389-407 F19.16 --- e_Ti1 ? Error on TI1 409-427 F19.16 --- Si1 ? Neutral Silicon abundance (1) 429-447 F19.16 --- e_Si1 ? Error on SI1 449-466 F18.16 --- Ni1 ? Neutral Nickel abundance (1) 468-485 F18.16 --- e_Ni1 ? Error on NI1 487-496 A10 --- Dataset In which dataset the star was used 498-504 I7 K TeffNN Effective Temperature (2) 506-511 I6 K e_TeffNN Error on Teff (2) 513-517 I5 K e1_TeffNN Internal error on Teff (2) 519-524 I6 K e2_TeffNN External error on Teff (2) 526-532 F7.3 [cm/s2] loggNN Log Surface Gravity (2) 534-540 F7.3 [cm/s2] e_loggNN Error on logg (2) 542-548 F7.3 [cm/s2] e1_loggNN Internal error on logg (2) 550-556 F7.3 [cm/s2] e2_loggNN External error on logg (2) 558-565 F8.3 --- [Fe/H]NN Metallicity (2) 567-575 F9.3 --- e_[Fe/H]NN Error on [Fe/H] (2) 577-583 F7.3 --- e1_[Fe/H]NN Internal error on [Fe/H] (2) 585-593 F9.3 --- e2_[Fe/H]NN External error on [Fe/H] (2) 595-601 F7.3 --- Al1NN Neutral Aluminium abundance (2) 603-609 F7.3 --- e_Al1NN Error on AL1NN 611-617 F7.3 --- e1_Al1NN Internal error on AL1NN 619-625 F7.3 --- e2_Al1NN External error on AL1NN 627-635 F9.3 --- Mg1NN Neutral Magnesium abundance (2) 637-645 F9.3 --- e_Mg1NN Error on MG1NN 647-654 F8.3 --- e1_Mg1NN Internal error on MG1NN 656-664 F9.3 --- e2_Mg1NN External error on MG1NN 666-672 F7.3 --- Ca1NN Neutral Calcium abundance (2) 674-681 F8.3 --- e_Ca1NN Error on CA1NN 683-689 F7.3 --- e1_Ca1NN Internal error on CA1NN 691-698 F8.3 --- e2_Ca1NN External error on CA1NN 700-706 F7.3 --- Ni1NN Neutral Nickel abundance (2) 708-716 F9.3 --- e_Ni1NN Error on NI1NN 718-724 F7.3 --- e1_Ni1NN Internal error on NI1NN 726-734 F9.3 --- e2_Ni1NN External error on NI1NN 736-743 F8.3 --- Ti1NN Neutral Titanium abundance (2) 745-752 F8.3 --- e_Ti1NN Error on TI1NN 754-761 F8.3 --- e1_Ti1NN Internal error on TI1NN 763-770 F8.3 --- e2_Ti1NN External error on TI1NN 772-779 F8.3 --- Si1NN Neutral Silicon abundance (2) 781-788 F8.3 --- e_Si1NN Error on SI1NN 790-797 F8.3 --- e1_Si1NN Internal error on SI1NN 799-806 F8.3 --- e2_Si1NN External error on SI1NN -------------------------------------------------------------------------------- Note (1): computed by Hourihane et al., 2023A&A...676A.129H 2023A&A...676A.129H, Cat. J/A+A/676/A129 Note (2): computed by OssicoNN -------------------------------------------------------------------------------- Acknowledgements: Nils Candebat, nils.candebat(at)inaf.it
(End) Patricia Vannier [CDS] 04-Nov-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line