J/A+A/692/A250 Luminous Compton-thick AGN (Akylas+, 2024)
Towards a complete census of luminous Compton-thick active galactic nuclei in
the Local Universe.
Akylas A., Georgantopoulos I., Gandhi P., Boorman P., Greenwell C.L.
<Astron. Astrophys. 692, A250 (2024)>
=2024A&A...692A.250A 2024A&A...692A.250A (SIMBAD/NED BibCode)
ADC_Keywords: Active gal. nuclei ; X-ray sources ; Photometry, infrared ;
Redshifts
Keywords: galaxies: active - quasars: supermassive black holes
Abstract:
X-ray surveys provide the most efficient means for the detection of
Active Galactic Nuclei (AGN). However, they face difficulties in
detecting the most heavily obscured Compton-thick AGN. The BAT
detector on board the Gehrels/Swift mission, operating in the very
hard 14-195 keV band, has provided the largest samples of
Compton-thick AGN in the local Universe. However, even these flux
limited samples can miss the most obscured sources among the
Compton-thick AGN population. A robust way to find these local sources
is to systematically study volume-limited AGN samples detected in the
IR or the optical part of the spectrum. Here, we utilize a local
sample (<100Mpc) of mid-IR selected AGN, unbiased against
obscuration, to determine the fraction of Compton-thick sources in the
local universe. When available we acquire X-ray spectral information
for the sources in our sample from previously published studies.
Additionally, to maximize the X-ray spectral information for the
sources in our sample, we analyse, for the first time, eleven
unexplored XMM-Newton and NuSTAR observations, identifying four new
Compton-thick sources. Our results reveal an increased fraction of
Compton-thick AGN among the sources that have not been detected by BAT
of 44%. Overall we estimate a fraction of Compton thick sources in
the local universe of 25-30% among mid-IR selected AGN. We find no
evidence for evolution of the AGN Compton-thick fraction with
luminosity
Description:
The full list of our sources used in the paper along with their column
density and luminosity.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 101 113 Log of our sample
--------------------------------------------------------------------------------
See also:
J/MNRAS/494/1784 : Local AGN survey (LASr) I (Asmus+, 2020)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 27 A27 --- Name Source name from Asmus et al.
(2020MNRAS.494.1784A 2020MNRAS.494.1784A, Cat. J/MNRAS/494/1784)
29 A1 --- n_Name [*s] Note (1)
31- 36 A6 --- Class Optical classification from SIMBAD or NED
38- 45 F8.4 deg RAdeg Right ascension (J2000)
47- 54 F8.4 deg DEdeg Declination (J2000)
56- 60 F5.3 --- z Redshift
62- 67 F6.2 [10-7W] logLW3 ?=- Logarithm of W3 (12um) continuum (2)
69- 73 F5.2 [10-7W] logLnuc Logarithm of the nuclear 12um luminosity
of the AGN (2)
75- 79 F5.2 [10-7W] logLX ?=- logarithm of the intrinsic 2-10keV
81 A1 --- l_logNHlos Limit flag on logNH
82- 86 F5.2 [cm-2] logNHlos ?=- Logarithm of the column density along
the line of sight
88-101 A14 --- r_logNHlos Reference for the column density (3)
--------------------------------------------------------------------------------
Note (1): Notes as follows:
* = Sources detected in Gehrels/Swift /Gehrels/Swift 70 months all sky survey
s = Sources with spectra from Gehrels/Swift /XRT
Note (2): Asmus et al. (2020MNRAS.494.1784A 2020MNRAS.494.1784A, Cat. J/MNRAS/484/1784.
Note (3): References as follows:
1 = Ricci et al. (2017ApJS..233...17R 2017ApJS..233...17R, Cat. J/ApJS/233/17)
2 = Marchesi et al. (2018ApJ...854...49M 2018ApJ...854...49M)
3 = Guo et al. (2023PASP..135a4102G 2023PASP..135a4102G)
4 = Annuar et al. (2020MNRAS.497..229A 2020MNRAS.497..229A)
5 = Bauer et al. (2015ApJ...812..116B 2015ApJ...812..116B)
6 = Tanimoto et al. (2022ApJS..260...30T 2022ApJS..260...30T)
7 = Zhao et al. (2020ApJ...894...71Z 2020ApJ...894...71Z)
8 = Masini et al. (2016A&A...589A..59M 2016A&A...589A..59M)
9 = Marchesi et al. (2019ApJ...872....8M 2019ApJ...872....8M)
10 = Yamada et al. (2021ApJS..257...61Y 2021ApJS..257...61Y, Cat. J/ApJS/257/61)
11 = Jiang et al. (2021MNRAS.505..702J 2021MNRAS.505..702J)
12 = Zhao et al. (2021A&A...650A..57Z 2021A&A...650A..57Z)
13 = Boorman et al. (2016ApJ...833..245B 2016ApJ...833..245B)
14 = Balokovic et al. (2014ApJ...794..111B 2014ApJ...794..111B)
15 = LaMassa et al. (2019ApJ...887..173L 2019ApJ...887..173L)
16 = Osorio-Clavijo et al. (2022MNRAS.510.5102O 2022MNRAS.510.5102O)
17 = Sengupta et al. (2023A&A...676A.103S 2023A&A...676A.103S)
18 = Kammoun et al. (2019ApJ...877..102K 2019ApJ...877..102K)
19 = Arevalo et al. (2014ApJ...791...81A 2014ApJ...791...81A)
20 = Panagiotou & Walter (2019A&A...626A..40P 2019A&A...626A..40P)
--------------------------------------------------------------------------------
Acknowledgements:
A. Akylas, aakylas(at)noa.gr
(End) A. Akylas [NOA, Greece], Patricia Vannier [CDS] 11-Oct-2024