J/A+A/692/A250         Luminous Compton-thick AGN                (Akylas+, 2024)

Towards a complete census of luminous Compton-thick active galactic nuclei in the Local Universe. Akylas A., Georgantopoulos I., Gandhi P., Boorman P., Greenwell C.L. <Astron. Astrophys. 692, A250 (2024)> =2024A&A...692A.250A 2024A&A...692A.250A (SIMBAD/NED BibCode)
ADC_Keywords: Active gal. nuclei ; X-ray sources ; Photometry, infrared ; Redshifts Keywords: galaxies: active - quasars: supermassive black holes Abstract: X-ray surveys provide the most efficient means for the detection of Active Galactic Nuclei (AGN). However, they face difficulties in detecting the most heavily obscured Compton-thick AGN. The BAT detector on board the Gehrels/Swift mission, operating in the very hard 14-195 keV band, has provided the largest samples of Compton-thick AGN in the local Universe. However, even these flux limited samples can miss the most obscured sources among the Compton-thick AGN population. A robust way to find these local sources is to systematically study volume-limited AGN samples detected in the IR or the optical part of the spectrum. Here, we utilize a local sample (<100Mpc) of mid-IR selected AGN, unbiased against obscuration, to determine the fraction of Compton-thick sources in the local universe. When available we acquire X-ray spectral information for the sources in our sample from previously published studies. Additionally, to maximize the X-ray spectral information for the sources in our sample, we analyse, for the first time, eleven unexplored XMM-Newton and NuSTAR observations, identifying four new Compton-thick sources. Our results reveal an increased fraction of Compton-thick AGN among the sources that have not been detected by BAT of 44%. Overall we estimate a fraction of Compton thick sources in the local universe of 25-30% among mid-IR selected AGN. We find no evidence for evolution of the AGN Compton-thick fraction with luminosity Description: The full list of our sources used in the paper along with their column density and luminosity. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 101 113 Log of our sample -------------------------------------------------------------------------------- See also: J/MNRAS/494/1784 : Local AGN survey (LASr) I (Asmus+, 2020) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 27 A27 --- Name Source name from Asmus et al. (2020MNRAS.494.1784A 2020MNRAS.494.1784A, Cat. J/MNRAS/494/1784) 29 A1 --- n_Name [*s] Note (1) 31- 36 A6 --- Class Optical classification from SIMBAD or NED 38- 45 F8.4 deg RAdeg Right ascension (J2000) 47- 54 F8.4 deg DEdeg Declination (J2000) 56- 60 F5.3 --- z Redshift 62- 67 F6.2 [10-7W] logLW3 ?=- Logarithm of W3 (12um) continuum (2) 69- 73 F5.2 [10-7W] logLnuc Logarithm of the nuclear 12um luminosity of the AGN (2) 75- 79 F5.2 [10-7W] logLX ?=- logarithm of the intrinsic 2-10keV 81 A1 --- l_logNHlos Limit flag on logNH 82- 86 F5.2 [cm-2] logNHlos ?=- Logarithm of the column density along the line of sight 88-101 A14 --- r_logNHlos Reference for the column density (3) -------------------------------------------------------------------------------- Note (1): Notes as follows: * = Sources detected in Gehrels/Swift /Gehrels/Swift 70 months all sky survey s = Sources with spectra from Gehrels/Swift /XRT Note (2): Asmus et al. (2020MNRAS.494.1784A 2020MNRAS.494.1784A, Cat. J/MNRAS/484/1784. Note (3): References as follows: 1 = Ricci et al. (2017ApJS..233...17R 2017ApJS..233...17R, Cat. J/ApJS/233/17) 2 = Marchesi et al. (2018ApJ...854...49M 2018ApJ...854...49M) 3 = Guo et al. (2023PASP..135a4102G 2023PASP..135a4102G) 4 = Annuar et al. (2020MNRAS.497..229A 2020MNRAS.497..229A) 5 = Bauer et al. (2015ApJ...812..116B 2015ApJ...812..116B) 6 = Tanimoto et al. (2022ApJS..260...30T 2022ApJS..260...30T) 7 = Zhao et al. (2020ApJ...894...71Z 2020ApJ...894...71Z) 8 = Masini et al. (2016A&A...589A..59M 2016A&A...589A..59M) 9 = Marchesi et al. (2019ApJ...872....8M 2019ApJ...872....8M) 10 = Yamada et al. (2021ApJS..257...61Y 2021ApJS..257...61Y, Cat. J/ApJS/257/61) 11 = Jiang et al. (2021MNRAS.505..702J 2021MNRAS.505..702J) 12 = Zhao et al. (2021A&A...650A..57Z 2021A&A...650A..57Z) 13 = Boorman et al. (2016ApJ...833..245B 2016ApJ...833..245B) 14 = Balokovic et al. (2014ApJ...794..111B 2014ApJ...794..111B) 15 = LaMassa et al. (2019ApJ...887..173L 2019ApJ...887..173L) 16 = Osorio-Clavijo et al. (2022MNRAS.510.5102O 2022MNRAS.510.5102O) 17 = Sengupta et al. (2023A&A...676A.103S 2023A&A...676A.103S) 18 = Kammoun et al. (2019ApJ...877..102K 2019ApJ...877..102K) 19 = Arevalo et al. (2014ApJ...791...81A 2014ApJ...791...81A) 20 = Panagiotou & Walter (2019A&A...626A..40P 2019A&A...626A..40P) -------------------------------------------------------------------------------- Acknowledgements: A. Akylas, aakylas(at)noa.gr
(End) A. Akylas [NOA, Greece], Patricia Vannier [CDS] 11-Oct-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line