J/A+A/693/A163      Chemical abundances of red supergiants I. (Taniguchi+, 2025)

MAGIS (Measuring Abundances of red super Giants with Infrared Spectroscopy) project. I. Establishment of an abundance analysis procedure for red supergiants and its evaluation with nearby stars. Taniguchi D., Matsunaga N., Kobayashi N., Jian M., Thorsbro B., Fukue K., Hamano S., Ikeda Y., Kawakita H., Kondo S., Otsubo S., Sameshima H., Tsujimoto T., Yasui C. <Astron. Astrophys. 693, A163 (2025)> =2025A&A...693A.163T 2025A&A...693A.163T (SIMBAD/NED BibCode)
ADC_Keywords: Stars, supergiant ; Stars, late-type ; Stars, fundamental ; Abundances ; Effective temperatures ; Spectra, infrared Keywords: methods: data analysis - stars: abundances - stars: late-type - stars: massive - Galaxy: abundances - infrared: stars Abstract: Red supergiants (RSGs) are good tracers of chemical abundances of the young population in the Milky Way and nearby galaxies, given their high luminosities (L≳104L☉_). However, previous abundance analysis methods for RSGs suffer some systematic uncertainties originating in, most notably, synthesized spectra for RSGs of molecular lines. We establish an abundance analysis procedure for RSGs to circumvent problems of previous works and test the procedure with ten nearby RSGs observed with the near-infrared high-resolution spectrograph WINERED (0.97-1.32 micron, R=28000). The wavelength range has an advantage that molecular lines contaminating atomic lines of interest are mostly weak. We first determine the effective temperatures (Teff) of the targets with the line-depth ratio (LDR) method, and calculate the surface gravities (logg) according to the Stefan-Boltzmann law. Then, we determine the microturbulent velocities (vmicro) and metallicities ([Fe/H]) simultaneously through the fitting of individual FeI lines. Finally, we determine the abundance ratios ([X/Fe] for element X) also through the fitting of individual lines. We determined [X/Fe] of ten elements (NaI, MgI, AlI, SiI, KI, CaI, TiI, CrI, NiI, and YII). We estimated the relative precision in the derived abundances to be 0.04-0.12dex for elements with more than two lines analyzed (e.g., FeI and MgI) and up to 0.18dex for the other elements (e.g., YII). We compared the resultant abundances of RSGs with the well-established abundances of another type of young stars, Cepheids, to evaluate the potential systematic bias in our abundance measurements, assuming that the young stars (i.e., both RSGs and Cepheids) in the solar neighborhood have common chemical abundances. Consequently, we found that the determined RSG abundances are well consistent with Cepheids within ≲0.1dex for some elements (notably, [Fe/H] and [Mg/Fe]). In other words, the bias in the abundance determination for these elements would be small. In contrast, the consistency is worse for some other elements (e.g., [Si/Fe] and [Y/Fe]). Nevertheless, the dispersion of the chemical abundances among our target RSGs was comparable with the individual statistical errors of the abundances. Hence, the procedure would be useful for evaluating the relative difference in chemical abundances among RSGs. Description: Tables of stellar parameters and chemical abundances for ten nearby RSGs (Tables 2-5 and D.1) are provided. Reference solar abundances are from Asplund et al. (2009ARA&A..47..481A 2009ARA&A..47..481A). Also provided are reduced spectra of the ten RSGs covering the Y (0.97-1.09 micron) and J (1.15-1.32 micron) bands obtained with the WINERED near-infrared high-resolution spectrograph (Ikeda et al. 2022PASP..134a5004I 2022PASP..134a5004I) attached to the 1.3m Araki Telescope (Table 1). The spectra were observed and analyzed by Taniguchi et al. (2021MNRAS.502.4210T 2021MNRAS.502.4210T), and later re-reduced in the paper. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 58 10 Observation log and reduced spectra table2.dat 103 10 Derived logg and related values table3.dat 109 10 Derived stellar parameters and [Fe/H] table4a.dat 280 20 Derived chemical abundances [X/H] table4b.dat 31 22 Miscellaneous information on [X/H] determination table5a.dat 256 20 Derived chemical abundances [X/Fe] table5b.dat 32 20 Miscellaneous information on [X/Fe] determination tabled1.dat 122 252 Line list from VALD3 and MB99 sp/* . 10 Individual fits spectra -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Name of RSG 12- 17 I6 --- HD HD number 19- 29 A11 --- SpType Spectral type (1) 31- 40 A10 "date" Obs.date Observation date 42- 58 A17 --- FileName Name of spectrum in subdirectory sp (2) -------------------------------------------------------------------------------- Note (1): Taken from SIMBAD on 2020 April 26. Note (2): We provide reduced spectra in multispec fits format for echelle orders 57-52 (Y band) and 48-43 (J band). Initial steps of the reduction were performed with WARP (Hamano et al., 2024PASP..136a4504H 2024PASP..136a4504H). Telluric absorption lines removed with the method by Sameshima et al. (2018PASP..130g4502S 2018PASP..130g4502S). Wavelength scale in the standard air at rest. Continuum normalized. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Name of RSG 12- 16 F5.3 mas plx Parallax (1) 18- 22 F5.3 mas e_plx Error in plx (1) 24- 29 F6.3 mag Ksmag Ks-band magnitude (2) 31- 35 F5.3 mag e_Ksmag Error in Ksmag (2) 37- 40 F4.2 mag A(V) V-band extinction (3) 42- 45 F4.2 mag e_A(V) Error in A(V) (3) 47- 50 I4 K Teff Effective temperature (4) 52- 54 I3 K e_Teff Error in Teff (4) 56- 59 F4.2 mag BCks Ks-band bolometric correction 61- 64 F4.2 mag e_BCks Error in BCks 66- 69 F4.2 [Lsun] logL Luminosity in log scale 71- 74 F4.2 [Lsun] b_logL Lower confidence bound of logL 76- 79 F4.2 [Lsun] B_logL Upper confidence bound of logL 81- 82 I2 Msun b_Mass Lower bound of current mass 84- 85 I2 Msun B_Mass Upper bound of current mass 87- 91 F5.2 [cm/s2] logg Surface gravity in log scale (4) 93- 97 F5.2 [cm/s2] b_logg Lower confidence bound of logg (4) 99-103 F5.2 [cm/s2] B_logg Upper confidence bound of logg (4) -------------------------------------------------------------------------------- Note (1): Parallax of Betelgeuse was taken from the Hipparcos catalog (van Leeuwen, 2007A&A...474..653V 2007A&A...474..653V, I/311). Parallax for the other RSGs were taken from the Gaia DR3 (Gaia Collaboration et al. 2016A&A...595A...1G 2016A&A...595A...1G, Gaia Collaboration et al., 2023A&A...674A...1G 2023A&A...674A...1G, I/355), where we corrected for the systematic bias according to the recipe presented by Lindegren et al. (2021A&A...649A...4L 2021A&A...649A...4L). Note (2): Taken from 2MASS point source catalog (Cutri et al., 2003tmc..book.....C 2003tmc..book.....C, Skrutskie et al., 2006AJ....131.1163S 2006AJ....131.1163S, II/246). Note (3): Taken from Levesque et al. (2005ApJ...628..973L 2005ApJ...628..973L). Note (4): Teff and logg are the same as in Table 3. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Name of RSG 12- 15 I4 K Teff Effective temperature (1) 17- 19 I3 K e_Teff Error in Teff (1) 21- 25 F5.2 [cm/s2] logg Surface gravity in log scale (1) 27- 31 F5.2 [cm/s2] b_logg Lower confidence bound of logg (1) 33- 37 F5.2 [cm/s2] B_logg Upper confidence bound of logg (1) 39- 42 F4.2 km/s vmic(V) Microturbulence determined with VALD3 44- 47 F4.2 km/s b_vmic(V) Lower confidence bound of vmic(V) 49- 52 F4.2 km/s B_vmic(V) Upper confidence bound of vmic(V) 54- 59 F6.3 [Sun] [Fe/H](V) Metallicity determined with VALD3 (2) 61- 66 F6.3 [Sun] b_[Fe/H](V) Lower confidence bound of [Fe/H](V) (2) 68- 73 F6.3 [Sun] B_[Fe/H](V) Upper confidence bound of [Fe/H](V) (2) 75- 78 F4.2 km/s vmic(M) Microturbulence determined with MB99 80- 83 F4.2 km/s b_vmic(M) Lower confidence bound of vmic(M) 85- 88 F4.2 km/s B_vmic(M) Upper confidence bound of vmic(M) 90- 95 F6.3 [Sun] [Fe/H](M) Metallicity determined with MB99 (2) 97-102 F6.3 [Sun] b_[Fe/H](M) Lower confidence bound of [Fe/H](M) (2) 104-109 F6.3 [Sun] B_[Fe/H](M) Upper confidence bound of [Fe/H](M) (2) -------------------------------------------------------------------------------- Note (1): Teff and logg are the same as in Table 2. Note (2): [Fe/H] is the same as in Table 4a. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4a.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Name of RSG 12- 16 A5 --- List Line list used (1) 18- 23 F6.3 [Sun] [Fe/H] Metallicity (2) 25- 30 F6.3 [Sun] b_[Fe/H] Lower confidence bound of [Fe/H] (2) 32- 37 F6.3 [Sun] B_[Fe/H] Upper confidence bound of [Fe/H] (2) 39- 40 I2 --- o_[Fe/H] Number of lines used for [Fe/H] 42- 47 F6.3 [Sun] [Na/H] ?=- [Na/H] abundance 49- 54 F6.3 [Sun] b_[Na/H] ?=- Lower confidence bound of [Na/H] 56- 61 F6.3 [Sun] B_[Na/H] ?=- Upper confidence bound of [Na/H] 63- 64 I2 --- o_[Na/H] ?=- Number of lines used for [Na/H] (3) 66- 71 F6.3 [Sun] [Mg/H] ?=- [Mg/H] abundance 73- 78 F6.3 [Sun] b_[Mg/H] ?=- Lower confidence bound of [Mg/H] 80- 85 F6.3 [Sun] B_[Mg/H] ?=- Upper confidence bound of [Mg/H] 87- 88 I2 --- o_[Mg/H] ?=- Number of lines used for [Mg/H] (3) 90- 95 F6.3 [Sun] [Al/H] ?=- [Al/H] abundance 97-102 F6.3 [Sun] b_[Al/H] ?=- Lower confidence bound of [Al/H] 104-109 F6.3 [Sun] B_[Al/H] ?=- Upper confidence bound of [Al/H] 111-112 I2 --- o_[Al/H] ?=- Number of lines used for [Al/H] (3) 114-119 F6.3 [Sun] [Si/H] ?=- [Si/H] abundance 121-126 F6.3 [Sun] b_[Si/H] ?=- Lower confidence bound of [Si/H] 128-133 F6.3 [Sun] B_[Si/H] ?=- Upper confidence bound of [Si/H] 135-136 I2 --- o_[Si/H] ?=- Number of lines used for [Si/H] (3) 138-143 F6.3 [Sun] [K/H] ?=- [K/H] abundance 145-150 F6.3 [Sun] b_[K/H] ?=- Lower confidence bound of [K/H] 152-157 F6.3 [Sun] B_[K/H] ?=- Upper confidence bound of [K/H] 159-160 I2 --- o_[K/H] ?=- Number of lines used for [K/H] (3) 162-167 F6.3 [Sun] [Ca/H] ?=- [Ca/H] abundance 169-174 F6.3 [Sun] b_[Ca/H] ?=- Lower confidence bound of [Ca/H] 176-181 F6.3 [Sun] B_[Ca/H] ?=- Upper confidence bound of [Ca/H] 183-184 I2 --- o_[Ca/H] ?=- Number of lines used for [Ca/H] (3) 186-191 F6.3 [Sun] [Ti/H] ?=- [Ti/H] abundance 193-198 F6.3 [Sun] b_[Ti/H] ?=- Lower confidence bound of [Ti/H] 200-205 F6.3 [Sun] B_[Ti/H] ?=- Upper confidence bound of [Ti/H] 207-208 I2 --- o_[Ti/H] ?=- Number of lines used for [Ti/H] (3) 210-215 F6.3 [Sun] [Cr/H] ?=- [Cr/H] abundance 217-222 F6.3 [Sun] b_[Cr/H] ?=- Lower confidence bound of [Cr/H] 224-229 F6.3 [Sun] B_[Cr/H] ?=- Upper confidence bound of [Cr/H] 231-232 I2 --- o_[Cr/H] ?=- Number of lines used for [Cr/H] (3) 234-239 F6.3 [Sun] [Ni/H] ?=- [Ni/H] abundance 241-246 F6.3 [Sun] b_[Ni/H] ?=- Lower confidence bound of [Ni/H] 248-253 F6.3 [Sun] B_[Ni/H] ?=- Upper confidence bound of [Ni/H] 255-256 I2 --- o_[Ni/H] ?=- Number of lines used for [Ni/H] (3) 258-263 F6.3 [Sun] [Y/H] ?=- [Y/H] abundance 265-270 F6.3 [Sun] b_[Y/H] ?=- Lower confidence bound of [Y/H] 272-277 F6.3 [Sun] B_[Y/H] ?=- Upper confidence bound of [Y/H] 279-280 I2 --- o_[Y/H] ?=- Number of lines used for [Y/H] (3) -------------------------------------------------------------------------------- Note (1): Reference for line list as follows: VALD3 = Vienna Atomic Line Database (Ryabchikova et al. 2015PhyS...90e4005R 2015PhyS...90e4005R); MB99 = Melendez and Barbuy (1999ApJS..124..527M 1999ApJS..124..527M, J/ApJS/124/527); Note (2): [Fe/H] is the same as in Table 3. Note (3): o_[X/H] is the same as in Table 5a. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4b.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- Species Name of species 8- 9 I2 --- Z Atomic number 11- 15 A5 --- List Line list used (1) 17- 18 I2 --- Nline ?=- Number of lines used (2) 20- 25 F6.3 [Sun] [X/H]mean ?=- Weighted mean of [X/H] (3) 27- 31 F5.3 [Sun] s_[X/H]mean ?=- Weighted standard deviation of [X/H] (3) -------------------------------------------------------------------------------- Note (1): Reference for line list as follows: VALD3 = Vienna Atomic Line Database (Ryabchikova et al. 2015PhyS...90e4005R 2015PhyS...90e4005R); MB99 = Melendez and Barbuy (1999ApJS..124..527M 1999ApJS..124..527M, J/ApJS/124/527); Note (2): Nline is the same as in Table 5b. Note (3): The weighted mean and standard deviation of [X/H] of the target RSGs after subtracting the radial abundance gradient traced with Cepheids using the Cepheids' abundances presented by Luck (2018AJ....156..171L 2018AJ....156..171L, J/AJ/156/171). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5a.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Name of RSG 12- 16 A5 --- List Line list used (1) 18- 23 F6.3 [Sun] [Na/Fe] ?=- [Na/Fe] abundance 25- 30 F6.3 [Sun] b_[Na/Fe] ?=- Lower confidence bound of [Na/Fe] 32- 37 F6.3 [Sun] B_[Na/Fe] ?=- Upper confidence bound of [Na/Fe] 39- 40 I2 --- o_[Na/Fe] ?=- Number of lines used for [Na/Fe] (2) 42- 47 F6.3 [Sun] [Mg/Fe] ?=- [Mg/Fe] abundance 49- 54 F6.3 [Sun] b_[Mg/Fe] ?=- Lower confidence bound of [Mg/Fe] 56- 61 F6.3 [Sun] B_[Mg/Fe] ?=- Upper confidence bound of [Mg/Fe] 63- 64 I2 --- o_[Mg/Fe] ?=- Number of lines used for [Mg/Fe] (2) 66- 71 F6.3 [Sun] [Al/Fe] ?=- [Al/Fe] abundance 73- 78 F6.3 [Sun] b_[Al/Fe] ?=- Lower confidence bound of [Al/Fe] 80- 85 F6.3 [Sun] B_[Al/Fe] ?=- Upper confidence bound of [Al/Fe] 87- 88 I2 --- o_[Al/Fe] ?=- Number of lines used for [Al/Fe] (2) 90- 95 F6.3 [Sun] [Si/Fe] ?=- [Si/Fe] abundance 97-102 F6.3 [Sun] b_[Si/Fe] ?=- Lower confidence bound of [Si/Fe] 104-109 F6.3 [Sun] B_[Si/Fe] ?=- Upper confidence bound of [Si/Fe] 111-112 I2 --- o_[Si/Fe] ?=- Number of lines used for [Si/Fe] (2) 114-119 F6.3 [Sun] [K/Fe] ?=- [K/Fe] abundance 121-126 F6.3 [Sun] b_[K/Fe] ?=- Lower confidence bound of [K/Fe] 128-133 F6.3 [Sun] B_[K/Fe] ?=- Upper confidence bound of [K/Fe] 135-136 I2 --- o_[K/Fe] ?=- Number of lines used for [K/Fe] (2) 138-143 F6.3 [Sun] [Ca/Fe] ?=- [Ca/Fe] abundance 145-150 F6.3 [Sun] b_[Ca/Fe] ?=- Lower confidence bound of [Ca/Fe] 152-157 F6.3 [Sun] B_[Ca/Fe] ?=- Upper confidence bound of [Ca/Fe] 159-160 I2 --- o_[Ca/Fe] ?=- Number of lines used for [Ca/Fe] (2) 162-167 F6.3 [Sun] [Ti/Fe] ?=- [Ti/Fe] abundance 169-174 F6.3 [Sun] b_[Ti/Fe] ?=- Lower confidence bound of [Ti/Fe] 176-181 F6.3 [Sun] B_[Ti/Fe] ?=- Upper confidence bound of [Ti/Fe] 183-184 I2 --- o_[Ti/Fe] ?=- Number of lines used for [Ti/Fe] (2) 186-191 F6.3 [Sun] [Cr/Fe] ?=- [Cr/Fe] abundance 193-198 F6.3 [Sun] b_[Cr/Fe] ?=- Lower confidence bound of [Cr/Fe] 200-205 F6.3 [Sun] B_[Cr/Fe] ?=- Upper confidence bound of [Cr/Fe] 207-208 I2 --- o_[Cr/Fe] ?=- Number of lines used for [Cr/Fe] (2) 210-215 F6.3 [Sun] [Ni/Fe] ?=- [Ni/Fe] abundance 217-222 F6.3 [Sun] b_[Ni/Fe] ?=- Lower confidence bound of [Ni/Fe] 224-229 F6.3 [Sun] B_[Ni/Fe] ?=- Upper confidence bound of [Ni/Fe] 231-232 I2 --- o_[Ni/Fe] ?=- Number of lines used for [Ni/Fe] (2) 234-239 F6.3 [Sun] [Y/Fe] ?=- [Y/Fe] abundance 241-246 F6.3 [Sun] b_[Y/Fe] ?=- Lower confidence bound of [Y/Fe] 248-253 F6.3 [Sun] B_[Y/Fe] ?=- Upper confidence bound of [Y/Fe] 255-256 I2 --- o_[Y/Fe] ?=- Number of lines used for [Y/Fe] (2) -------------------------------------------------------------------------------- Note (1): Reference for line list as follows: VALD3 = Vienna Atomic Line Database (Ryabchikova et al. 2015PhyS...90e4005R 2015PhyS...90e4005R); MB99 = Melendez and Barbuy (1999ApJS..124..527M 1999ApJS..124..527M, J/ApJS/124/527); Note (2): o_[X/H] is the same as in Table 4a. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5b.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- Species Name of species 9- 10 I2 --- Z Atomic number 12- 16 A5 --- List Line list used (1) 18- 19 I2 --- Nline ?=- Number of lines used (2) 21- 26 F6.3 [Sun] [X/Fe]mean ?=- Weighted mean of [X/Fe] (3) 28- 32 F5.3 [Sun] s_[X/Fe]mean ?=- Weighted standard deviation of [X/Fe] (3) -------------------------------------------------------------------------------- Note (1): Reference for line list as follows: VALD3 = Vienna Atomic Line Database (Ryabchikova et al. 2015PhyS...90e4005R 2015PhyS...90e4005R); MB99 = Melendez and Barbuy (1999ApJS..124..527M 1999ApJS..124..527M, J/ApJS/124/527); Note (2): Nline is the same as in Table 4b. Note (3): The weighted mean and standard deviation of [X/Fe] of the target RSGs after subtracting the radial abundance gradient traced with Cepheids using the Cepheids' abundances presented by Luck (2018AJ....156..171L 2018AJ....156..171L, J/AJ/156/171). -------------------------------------------------------------------------------- Byte-by-byte Description of file: tabled1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 A5 --- Species Element and ionization stage 7- 17 F11.5 0.1nm lambda(V) ?=- Wavelength in air (VALD3) 19- 23 F5.3 eV EP(V) ?=- Excitation potential (VALD3) 25- 30 F6.3 [-] loggf(V) ?=- Oscillator strength (VALD3) 32- 36 F5.2 [-] logtau(V) ?=- Rosseland-mean optical depth of the line-forming layer (VALD3) 38- 42 F5.3 --- dOnlyOne(V) ?=- Depth (VALD3) 44- 48 F5.3 --- beta1(V) ?=- Contamination fraction in line core (VALD3) 50- 54 F5.3 --- beta2(V) ?=- Contamination fraction in line wing (VALD3) 56- 57 I2 --- Ni(V) ?=- Number of stars having valid [X/H] measurements (VALD3) 59- 64 F6.3 [-] DeltaXH(V) ?=- Correction term to [X/H] measurement (VALD3) 66 A1 --- Used(V) [YN-] Whether line was used (VALD3) 68- 75 F8.2 0.1nm lambda(M) ?=- Wavelength in air (MB99) 77- 80 F4.2 eV EP(M) ?=- Excitation potential (MB99) 82- 86 F5.2 [-] loggf(M) ?=- Oscillator strength (MB99) 88- 92 F5.2 [-] logtau(M) ?=- Rosseland-mean optical depth of the line-forming layer (MB99) 94- 98 F5.3 --- dOnlyOne(M) ?=- Depth (MB99) 100-104 F5.3 --- beta1(M) ?=- Contamination fraction in line core (MB99) 106-110 F5.3 --- beta2(M) ?=- Contamination fraction in line wing (MB99) 112-113 I2 --- Ni(M) ?=- Number of stars having valid [X/H] measurements (MB99) 115-120 F6.3 [-] DeltaXH(M) ?=- Correction term to [X/H] measurement (MB99) 122 A1 --- Used(M) [YN-] Whether line was used (MB99) -------------------------------------------------------------------------------- Acknowledgements: Daisuke Taniguchi, d.taniguchi.astro(at)gmail.com
(End) Daisuke Taniguchi [NAOJ], Patricia Vannier [CDS] 09-Dec-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line