J/A+A/693/A163 Chemical abundances of red supergiants I. (Taniguchi+, 2025)
MAGIS (Measuring Abundances of red super Giants with Infrared Spectroscopy)
project. I. Establishment of an abundance analysis procedure for red supergiants
and its evaluation with nearby stars.
Taniguchi D., Matsunaga N., Kobayashi N., Jian M., Thorsbro B., Fukue K.,
Hamano S., Ikeda Y., Kawakita H., Kondo S., Otsubo S., Sameshima H.,
Tsujimoto T., Yasui C.
<Astron. Astrophys. 693, A163 (2025)>
=2025A&A...693A.163T 2025A&A...693A.163T (SIMBAD/NED BibCode)
ADC_Keywords: Stars, supergiant ; Stars, late-type ; Stars, fundamental ;
Abundances ; Effective temperatures ; Spectra, infrared
Keywords: methods: data analysis - stars: abundances - stars: late-type -
stars: massive - Galaxy: abundances - infrared: stars
Abstract:
Red supergiants (RSGs) are good tracers of chemical abundances of the
young population in the Milky Way and nearby galaxies, given their
high luminosities (L≳104L☉_). However, previous abundance
analysis methods for RSGs suffer some systematic uncertainties
originating in, most notably, synthesized spectra for RSGs of
molecular lines.
We establish an abundance analysis procedure for RSGs to circumvent
problems of previous works and test the procedure with ten nearby RSGs
observed with the near-infrared high-resolution spectrograph WINERED
(0.97-1.32 micron, R=28000). The wavelength range has an advantage
that molecular lines contaminating atomic lines of interest are mostly
weak.
We first determine the effective temperatures (Teff) of the targets
with the line-depth ratio (LDR) method, and calculate the surface
gravities (logg) according to the Stefan-Boltzmann law. Then, we
determine the microturbulent velocities (vmicro) and metallicities
([Fe/H]) simultaneously through the fitting of individual FeI lines.
Finally, we determine the abundance ratios ([X/Fe] for element X) also
through the fitting of individual lines.
We determined [X/Fe] of ten elements (NaI, MgI, AlI, SiI, KI, CaI,
TiI, CrI, NiI, and YII). We estimated the relative precision in the
derived abundances to be 0.04-0.12dex for elements with more than
two lines analyzed (e.g., FeI and MgI) and up to 0.18dex for the
other elements (e.g., YII). We compared the resultant abundances of
RSGs with the well-established abundances of another type of young
stars, Cepheids, to evaluate the potential systematic bias in our
abundance measurements, assuming that the young stars (i.e., both RSGs
and Cepheids) in the solar neighborhood have common chemical
abundances. Consequently, we found that the determined RSG abundances
are well consistent with Cepheids within ≲0.1dex for some elements
(notably, [Fe/H] and [Mg/Fe]). In other words, the bias in the
abundance determination for these elements would be small. In
contrast, the consistency is worse for some other elements (e.g.,
[Si/Fe] and [Y/Fe]). Nevertheless, the dispersion of the chemical
abundances among our target RSGs was comparable with the individual
statistical errors of the abundances. Hence, the procedure would be
useful for evaluating the relative difference in chemical abundances
among RSGs.
Description:
Tables of stellar parameters and chemical abundances for ten nearby RSGs
(Tables 2-5 and D.1) are provided. Reference solar abundances are from
Asplund et al. (2009ARA&A..47..481A 2009ARA&A..47..481A).
Also provided are reduced spectra of the ten RSGs covering the
Y (0.97-1.09 micron) and J (1.15-1.32 micron) bands obtained with the
WINERED near-infrared high-resolution spectrograph (Ikeda et al.
2022PASP..134a5004I 2022PASP..134a5004I) attached to the 1.3m Araki Telescope (Table 1).
The spectra were observed and analyzed by Taniguchi et al.
(2021MNRAS.502.4210T 2021MNRAS.502.4210T), and later re-reduced in the paper.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 58 10 Observation log and reduced spectra
table2.dat 103 10 Derived logg and related values
table3.dat 109 10 Derived stellar parameters and [Fe/H]
table4a.dat 280 20 Derived chemical abundances [X/H]
table4b.dat 31 22 Miscellaneous information on [X/H] determination
table5a.dat 256 20 Derived chemical abundances [X/Fe]
table5b.dat 32 20 Miscellaneous information on [X/Fe] determination
tabled1.dat 122 252 Line list from VALD3 and MB99
sp/* . 10 Individual fits spectra
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- Name Name of RSG
12- 17 I6 --- HD HD number
19- 29 A11 --- SpType Spectral type (1)
31- 40 A10 "date" Obs.date Observation date
42- 58 A17 --- FileName Name of spectrum in subdirectory sp (2)
--------------------------------------------------------------------------------
Note (1): Taken from SIMBAD on 2020 April 26.
Note (2): We provide reduced spectra in multispec fits format for echelle
orders 57-52 (Y band) and 48-43 (J band). Initial steps of the reduction were
performed with WARP (Hamano et al., 2024PASP..136a4504H 2024PASP..136a4504H). Telluric absorption
lines removed with the method by Sameshima et al. (2018PASP..130g4502S 2018PASP..130g4502S).
Wavelength scale in the standard air at rest. Continuum normalized.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- Name Name of RSG
12- 16 F5.3 mas plx Parallax (1)
18- 22 F5.3 mas e_plx Error in plx (1)
24- 29 F6.3 mag Ksmag Ks-band magnitude (2)
31- 35 F5.3 mag e_Ksmag Error in Ksmag (2)
37- 40 F4.2 mag A(V) V-band extinction (3)
42- 45 F4.2 mag e_A(V) Error in A(V) (3)
47- 50 I4 K Teff Effective temperature (4)
52- 54 I3 K e_Teff Error in Teff (4)
56- 59 F4.2 mag BCks Ks-band bolometric correction
61- 64 F4.2 mag e_BCks Error in BCks
66- 69 F4.2 [Lsun] logL Luminosity in log scale
71- 74 F4.2 [Lsun] b_logL Lower confidence bound of logL
76- 79 F4.2 [Lsun] B_logL Upper confidence bound of logL
81- 82 I2 Msun b_Mass Lower bound of current mass
84- 85 I2 Msun B_Mass Upper bound of current mass
87- 91 F5.2 [cm/s2] logg Surface gravity in log scale (4)
93- 97 F5.2 [cm/s2] b_logg Lower confidence bound of logg (4)
99-103 F5.2 [cm/s2] B_logg Upper confidence bound of logg (4)
--------------------------------------------------------------------------------
Note (1): Parallax of Betelgeuse was taken from the Hipparcos catalog (van
Leeuwen, 2007A&A...474..653V 2007A&A...474..653V, I/311). Parallax for the other RSGs were
taken from the Gaia DR3 (Gaia Collaboration et al. 2016A&A...595A...1G 2016A&A...595A...1G, Gaia
Collaboration et al., 2023A&A...674A...1G 2023A&A...674A...1G, I/355), where we corrected
for the systematic bias according to the recipe presented by Lindegren et al.
(2021A&A...649A...4L 2021A&A...649A...4L).
Note (2): Taken from 2MASS point source catalog (Cutri et al.,
2003tmc..book.....C 2003tmc..book.....C, Skrutskie et al., 2006AJ....131.1163S 2006AJ....131.1163S, II/246).
Note (3): Taken from Levesque et al. (2005ApJ...628..973L 2005ApJ...628..973L).
Note (4): Teff and logg are the same as in Table 3.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- Name Name of RSG
12- 15 I4 K Teff Effective temperature (1)
17- 19 I3 K e_Teff Error in Teff (1)
21- 25 F5.2 [cm/s2] logg Surface gravity in log scale (1)
27- 31 F5.2 [cm/s2] b_logg Lower confidence bound of logg (1)
33- 37 F5.2 [cm/s2] B_logg Upper confidence bound of logg (1)
39- 42 F4.2 km/s vmic(V) Microturbulence determined with VALD3
44- 47 F4.2 km/s b_vmic(V) Lower confidence bound of vmic(V)
49- 52 F4.2 km/s B_vmic(V) Upper confidence bound of vmic(V)
54- 59 F6.3 [Sun] [Fe/H](V) Metallicity determined with VALD3 (2)
61- 66 F6.3 [Sun] b_[Fe/H](V) Lower confidence bound of [Fe/H](V) (2)
68- 73 F6.3 [Sun] B_[Fe/H](V) Upper confidence bound of [Fe/H](V) (2)
75- 78 F4.2 km/s vmic(M) Microturbulence determined with MB99
80- 83 F4.2 km/s b_vmic(M) Lower confidence bound of vmic(M)
85- 88 F4.2 km/s B_vmic(M) Upper confidence bound of vmic(M)
90- 95 F6.3 [Sun] [Fe/H](M) Metallicity determined with MB99 (2)
97-102 F6.3 [Sun] b_[Fe/H](M) Lower confidence bound of [Fe/H](M) (2)
104-109 F6.3 [Sun] B_[Fe/H](M) Upper confidence bound of [Fe/H](M) (2)
--------------------------------------------------------------------------------
Note (1): Teff and logg are the same as in Table 2.
Note (2): [Fe/H] is the same as in Table 4a.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4a.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- Name Name of RSG
12- 16 A5 --- List Line list used (1)
18- 23 F6.3 [Sun] [Fe/H] Metallicity (2)
25- 30 F6.3 [Sun] b_[Fe/H] Lower confidence bound of [Fe/H] (2)
32- 37 F6.3 [Sun] B_[Fe/H] Upper confidence bound of [Fe/H] (2)
39- 40 I2 --- o_[Fe/H] Number of lines used for [Fe/H]
42- 47 F6.3 [Sun] [Na/H] ?=- [Na/H] abundance
49- 54 F6.3 [Sun] b_[Na/H] ?=- Lower confidence bound of [Na/H]
56- 61 F6.3 [Sun] B_[Na/H] ?=- Upper confidence bound of [Na/H]
63- 64 I2 --- o_[Na/H] ?=- Number of lines used for [Na/H] (3)
66- 71 F6.3 [Sun] [Mg/H] ?=- [Mg/H] abundance
73- 78 F6.3 [Sun] b_[Mg/H] ?=- Lower confidence bound of [Mg/H]
80- 85 F6.3 [Sun] B_[Mg/H] ?=- Upper confidence bound of [Mg/H]
87- 88 I2 --- o_[Mg/H] ?=- Number of lines used for [Mg/H] (3)
90- 95 F6.3 [Sun] [Al/H] ?=- [Al/H] abundance
97-102 F6.3 [Sun] b_[Al/H] ?=- Lower confidence bound of [Al/H]
104-109 F6.3 [Sun] B_[Al/H] ?=- Upper confidence bound of [Al/H]
111-112 I2 --- o_[Al/H] ?=- Number of lines used for [Al/H] (3)
114-119 F6.3 [Sun] [Si/H] ?=- [Si/H] abundance
121-126 F6.3 [Sun] b_[Si/H] ?=- Lower confidence bound of [Si/H]
128-133 F6.3 [Sun] B_[Si/H] ?=- Upper confidence bound of [Si/H]
135-136 I2 --- o_[Si/H] ?=- Number of lines used for [Si/H] (3)
138-143 F6.3 [Sun] [K/H] ?=- [K/H] abundance
145-150 F6.3 [Sun] b_[K/H] ?=- Lower confidence bound of [K/H]
152-157 F6.3 [Sun] B_[K/H] ?=- Upper confidence bound of [K/H]
159-160 I2 --- o_[K/H] ?=- Number of lines used for [K/H] (3)
162-167 F6.3 [Sun] [Ca/H] ?=- [Ca/H] abundance
169-174 F6.3 [Sun] b_[Ca/H] ?=- Lower confidence bound of [Ca/H]
176-181 F6.3 [Sun] B_[Ca/H] ?=- Upper confidence bound of [Ca/H]
183-184 I2 --- o_[Ca/H] ?=- Number of lines used for [Ca/H] (3)
186-191 F6.3 [Sun] [Ti/H] ?=- [Ti/H] abundance
193-198 F6.3 [Sun] b_[Ti/H] ?=- Lower confidence bound of [Ti/H]
200-205 F6.3 [Sun] B_[Ti/H] ?=- Upper confidence bound of [Ti/H]
207-208 I2 --- o_[Ti/H] ?=- Number of lines used for [Ti/H] (3)
210-215 F6.3 [Sun] [Cr/H] ?=- [Cr/H] abundance
217-222 F6.3 [Sun] b_[Cr/H] ?=- Lower confidence bound of [Cr/H]
224-229 F6.3 [Sun] B_[Cr/H] ?=- Upper confidence bound of [Cr/H]
231-232 I2 --- o_[Cr/H] ?=- Number of lines used for [Cr/H] (3)
234-239 F6.3 [Sun] [Ni/H] ?=- [Ni/H] abundance
241-246 F6.3 [Sun] b_[Ni/H] ?=- Lower confidence bound of [Ni/H]
248-253 F6.3 [Sun] B_[Ni/H] ?=- Upper confidence bound of [Ni/H]
255-256 I2 --- o_[Ni/H] ?=- Number of lines used for [Ni/H] (3)
258-263 F6.3 [Sun] [Y/H] ?=- [Y/H] abundance
265-270 F6.3 [Sun] b_[Y/H] ?=- Lower confidence bound of [Y/H]
272-277 F6.3 [Sun] B_[Y/H] ?=- Upper confidence bound of [Y/H]
279-280 I2 --- o_[Y/H] ?=- Number of lines used for [Y/H] (3)
--------------------------------------------------------------------------------
Note (1): Reference for line list as follows:
VALD3 = Vienna Atomic Line Database (Ryabchikova et al. 2015PhyS...90e4005R 2015PhyS...90e4005R);
MB99 = Melendez and Barbuy (1999ApJS..124..527M 1999ApJS..124..527M, J/ApJS/124/527);
Note (2): [Fe/H] is the same as in Table 3.
Note (3): o_[X/H] is the same as in Table 5a.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4b.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 A6 --- Species Name of species
8- 9 I2 --- Z Atomic number
11- 15 A5 --- List Line list used (1)
17- 18 I2 --- Nline ?=- Number of lines used (2)
20- 25 F6.3 [Sun] [X/H]mean ?=- Weighted mean of [X/H] (3)
27- 31 F5.3 [Sun] s_[X/H]mean ?=- Weighted standard deviation of [X/H] (3)
--------------------------------------------------------------------------------
Note (1): Reference for line list as follows:
VALD3 = Vienna Atomic Line Database (Ryabchikova et al. 2015PhyS...90e4005R 2015PhyS...90e4005R);
MB99 = Melendez and Barbuy (1999ApJS..124..527M 1999ApJS..124..527M, J/ApJS/124/527);
Note (2): Nline is the same as in Table 5b.
Note (3): The weighted mean and standard deviation of [X/H] of the target RSGs
after subtracting the radial abundance gradient traced with Cepheids using the
Cepheids' abundances presented by Luck (2018AJ....156..171L 2018AJ....156..171L, J/AJ/156/171).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5a.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- Name Name of RSG
12- 16 A5 --- List Line list used (1)
18- 23 F6.3 [Sun] [Na/Fe] ?=- [Na/Fe] abundance
25- 30 F6.3 [Sun] b_[Na/Fe] ?=- Lower confidence bound of [Na/Fe]
32- 37 F6.3 [Sun] B_[Na/Fe] ?=- Upper confidence bound of [Na/Fe]
39- 40 I2 --- o_[Na/Fe] ?=- Number of lines used for [Na/Fe] (2)
42- 47 F6.3 [Sun] [Mg/Fe] ?=- [Mg/Fe] abundance
49- 54 F6.3 [Sun] b_[Mg/Fe] ?=- Lower confidence bound of [Mg/Fe]
56- 61 F6.3 [Sun] B_[Mg/Fe] ?=- Upper confidence bound of [Mg/Fe]
63- 64 I2 --- o_[Mg/Fe] ?=- Number of lines used for [Mg/Fe] (2)
66- 71 F6.3 [Sun] [Al/Fe] ?=- [Al/Fe] abundance
73- 78 F6.3 [Sun] b_[Al/Fe] ?=- Lower confidence bound of [Al/Fe]
80- 85 F6.3 [Sun] B_[Al/Fe] ?=- Upper confidence bound of [Al/Fe]
87- 88 I2 --- o_[Al/Fe] ?=- Number of lines used for [Al/Fe] (2)
90- 95 F6.3 [Sun] [Si/Fe] ?=- [Si/Fe] abundance
97-102 F6.3 [Sun] b_[Si/Fe] ?=- Lower confidence bound of [Si/Fe]
104-109 F6.3 [Sun] B_[Si/Fe] ?=- Upper confidence bound of [Si/Fe]
111-112 I2 --- o_[Si/Fe] ?=- Number of lines used for [Si/Fe] (2)
114-119 F6.3 [Sun] [K/Fe] ?=- [K/Fe] abundance
121-126 F6.3 [Sun] b_[K/Fe] ?=- Lower confidence bound of [K/Fe]
128-133 F6.3 [Sun] B_[K/Fe] ?=- Upper confidence bound of [K/Fe]
135-136 I2 --- o_[K/Fe] ?=- Number of lines used for [K/Fe] (2)
138-143 F6.3 [Sun] [Ca/Fe] ?=- [Ca/Fe] abundance
145-150 F6.3 [Sun] b_[Ca/Fe] ?=- Lower confidence bound of [Ca/Fe]
152-157 F6.3 [Sun] B_[Ca/Fe] ?=- Upper confidence bound of [Ca/Fe]
159-160 I2 --- o_[Ca/Fe] ?=- Number of lines used for [Ca/Fe] (2)
162-167 F6.3 [Sun] [Ti/Fe] ?=- [Ti/Fe] abundance
169-174 F6.3 [Sun] b_[Ti/Fe] ?=- Lower confidence bound of [Ti/Fe]
176-181 F6.3 [Sun] B_[Ti/Fe] ?=- Upper confidence bound of [Ti/Fe]
183-184 I2 --- o_[Ti/Fe] ?=- Number of lines used for [Ti/Fe] (2)
186-191 F6.3 [Sun] [Cr/Fe] ?=- [Cr/Fe] abundance
193-198 F6.3 [Sun] b_[Cr/Fe] ?=- Lower confidence bound of [Cr/Fe]
200-205 F6.3 [Sun] B_[Cr/Fe] ?=- Upper confidence bound of [Cr/Fe]
207-208 I2 --- o_[Cr/Fe] ?=- Number of lines used for [Cr/Fe] (2)
210-215 F6.3 [Sun] [Ni/Fe] ?=- [Ni/Fe] abundance
217-222 F6.3 [Sun] b_[Ni/Fe] ?=- Lower confidence bound of [Ni/Fe]
224-229 F6.3 [Sun] B_[Ni/Fe] ?=- Upper confidence bound of [Ni/Fe]
231-232 I2 --- o_[Ni/Fe] ?=- Number of lines used for [Ni/Fe] (2)
234-239 F6.3 [Sun] [Y/Fe] ?=- [Y/Fe] abundance
241-246 F6.3 [Sun] b_[Y/Fe] ?=- Lower confidence bound of [Y/Fe]
248-253 F6.3 [Sun] B_[Y/Fe] ?=- Upper confidence bound of [Y/Fe]
255-256 I2 --- o_[Y/Fe] ?=- Number of lines used for [Y/Fe] (2)
--------------------------------------------------------------------------------
Note (1): Reference for line list as follows:
VALD3 = Vienna Atomic Line Database (Ryabchikova et al. 2015PhyS...90e4005R 2015PhyS...90e4005R);
MB99 = Melendez and Barbuy (1999ApJS..124..527M 1999ApJS..124..527M, J/ApJS/124/527);
Note (2): o_[X/H] is the same as in Table 4a.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5b.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 7 A7 --- Species Name of species
9- 10 I2 --- Z Atomic number
12- 16 A5 --- List Line list used (1)
18- 19 I2 --- Nline ?=- Number of lines used (2)
21- 26 F6.3 [Sun] [X/Fe]mean ?=- Weighted mean of [X/Fe] (3)
28- 32 F5.3 [Sun] s_[X/Fe]mean ?=- Weighted standard deviation of [X/Fe] (3)
--------------------------------------------------------------------------------
Note (1): Reference for line list as follows:
VALD3 = Vienna Atomic Line Database (Ryabchikova et al. 2015PhyS...90e4005R 2015PhyS...90e4005R);
MB99 = Melendez and Barbuy (1999ApJS..124..527M 1999ApJS..124..527M, J/ApJS/124/527);
Note (2): Nline is the same as in Table 4b.
Note (3): The weighted mean and standard deviation of [X/Fe] of the target
RSGs after subtracting the radial abundance gradient traced with Cepheids
using the Cepheids' abundances presented by Luck (2018AJ....156..171L 2018AJ....156..171L,
J/AJ/156/171).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tabled1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 A5 --- Species Element and ionization stage
7- 17 F11.5 0.1nm lambda(V) ?=- Wavelength in air (VALD3)
19- 23 F5.3 eV EP(V) ?=- Excitation potential (VALD3)
25- 30 F6.3 [-] loggf(V) ?=- Oscillator strength (VALD3)
32- 36 F5.2 [-] logtau(V) ?=- Rosseland-mean optical depth of the
line-forming layer (VALD3)
38- 42 F5.3 --- dOnlyOne(V) ?=- Depth (VALD3)
44- 48 F5.3 --- beta1(V) ?=- Contamination fraction in line core
(VALD3)
50- 54 F5.3 --- beta2(V) ?=- Contamination fraction in line wing
(VALD3)
56- 57 I2 --- Ni(V) ?=- Number of stars having valid [X/H]
measurements (VALD3)
59- 64 F6.3 [-] DeltaXH(V) ?=- Correction term to [X/H] measurement
(VALD3)
66 A1 --- Used(V) [YN-] Whether line was used (VALD3)
68- 75 F8.2 0.1nm lambda(M) ?=- Wavelength in air (MB99)
77- 80 F4.2 eV EP(M) ?=- Excitation potential (MB99)
82- 86 F5.2 [-] loggf(M) ?=- Oscillator strength (MB99)
88- 92 F5.2 [-] logtau(M) ?=- Rosseland-mean optical depth of the
line-forming layer (MB99)
94- 98 F5.3 --- dOnlyOne(M) ?=- Depth (MB99)
100-104 F5.3 --- beta1(M) ?=- Contamination fraction in line core
(MB99)
106-110 F5.3 --- beta2(M) ?=- Contamination fraction in line wing
(MB99)
112-113 I2 --- Ni(M) ?=- Number of stars having valid [X/H]
measurements (MB99)
115-120 F6.3 [-] DeltaXH(M) ?=- Correction term to [X/H] measurement
(MB99)
122 A1 --- Used(M) [YN-] Whether line was used (MB99)
--------------------------------------------------------------------------------
Acknowledgements:
Daisuke Taniguchi, d.taniguchi.astro(at)gmail.com
(End) Daisuke Taniguchi [NAOJ], Patricia Vannier [CDS] 09-Dec-2024