J/A+A/693/A285   Spectral Energy Distribution of 100 stars (Sanz-Forcada+, 2025)

Connection between planetary He I λ 10830 Å absorption and extreme-ultraviolet emission of planet-host stars. Sanz-Forcada J., Lopez-Puertas M., Lampon M., Czesla S., Nortmann L., Caballero J.A., Zapatero Osorio M.R., Amado P.J., Murgas F., Orell-Miquel J., Palle E., Quirrenbach A., Reiners A., Ribas I., Sanchez-Lopez A., Solano E. <Astron. Astrophys. 693, A285 (2025)> =2025A&A...693A.285S 2025A&A...693A.285S (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Exoplanets ; Stars, late-type ; X-ray sources ; Extreme UV sources Keywords: planets and satellites: atmospheres - planets and satellites: general - stars: coronae - ultraviolet: planetary systems - X-rays: stars Abstract: The detection of the HeI 10830Å triplet in exoplanet atmospheres has opened a new window for probing planetary properties, including atmospheric escape. Unlike Lyman alpha, the triplet is significantly less affected by the interstellar medium absorption. Sufficient X-ray and extreme ultraviolet (XUV) stellar irradiation may trigger the formation of the HeI triplet via photoionization and posterior recombination processes in the planet atmospheres. Only a weak trend between stellar XUV emission and the planetary HeI strength has been observed so far. We aim to confirm this mechanism for producing near-infrared HeI absorption in exoplanetary atmospheres by examining a substantial sample of planetary systems. We obtain homogeneous measurements of the planetary HeI line equivalent width and consistently compute the stellar XUV ionizing irradiation. Our first step is to derive new coronal models for the planet-host stars. We use updated data from the X-exoplanets database, archival X-ray spectra of M-type stars (including AU Mic and Proxima Centauri), and new XMM-Newton X-ray data recently obtained for the CARMENES project. These data are complemented at longer wavelengths with publicly available HST, FUSE, and EUVE spectra. A total of 75 stars are carefully analyzed to obtain a new calibration between X-ray and extreme ultraviolet (EUV) emission. Two distinct relationships between stellar X-ray emission (5-100Å) and EUV H (100-920Å) or EUV He (100-504Å) radiation are obtained to scale the emission from late-type (F to M) stellar coronae. A total of 48 systems with reported planetary HeI 10830Å studies, Including 21 positive detections and 27 upper limits, exhibit a robust relationship between the strength of the planetary He I feature and the ionizing XUV He received by the planet, corrected by stellar and planetary radii, and the planet gravitational potential. Some outliers could be explained by a different atmospheric composition, or the lack of planetary gaseous atmospheres. This relation may serve as a guide to predict the detectability of the HeI 10830Å absorption in exoplanet atmospheres. Description: The table provides the Spectral Energy Distribution (SED) of 100 stars, modeled using coronal and transition region data as described in Section 3 of the paper. First column represent the Wavelength, in angstroms, and the rest of columns are density flux at 1 a.u. in units of erg/s/cm2/Å. Atomic data from ATOMDB v3.0.9 (APED, Smith et al. 2001ApJ...556L..91S 2001ApJ...556L..91S). This SED represents only the contribution from material at temperatures higher than 10000K. Photospheric contribution should be considered for wavelengths higher than ∼1250Å in F-M stars, and even shorter wavelengths for A stars (e.g. Kelt-9). The columns of the density flux have their (SIMBAD-compatible) stellar names in the heading. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file stars.dat 41 100 List of studied stars sedsf25.dat 1114 2798 Table with SED in X-rays, EUV and UV of 100 stars (wavelength vs density flux) -------------------------------------------------------------------------------- Byte-by-byte Description of file: stars.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name Star name 14- 15 I2 h RAh Simbad right ascension (J2000) 17- 18 I2 min RAm Simbad right ascension (J2000) 20- 24 F5.2 s RAs Simbad right ascension (J2000) 26 A1 --- DE- Simbad declination sign (J2000) 27- 28 I2 deg DEd Simbad declination (J2000) 30- 31 I2 arcmin DEm Simbad declination (J2000) 33- 36 F4.1 arcsec DEs Simbad declination (J2000) 38- 41 A4 --- Col Name of the column with flux density in sedsf25.dat file -------------------------------------------------------------------------------- Byte-by-byte Description of file: sedsf25.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 F8.3 0.1nm lambda [1.005/2797.5] Wavelength Wavelength 10- 19 E10.8 10mW/m2/nm F1 14 Her density flux at 1 a.u. 21- 30 E10.8 10mW/m2/nm F2 ?=0 16 Cyg B density flux at 1 a.u. 32- 41 E10.7 10mW/m2/nm F3 30 Ari B density flux at 1 a.u. 43- 52 E10.8 10mW/m2/nm F4 ?=0 47 UMa density flux at 1 a.u. 54- 63 E10.8 10mW/m2/nm F5 55 Cnc density flux at 1 a.u. 65- 75 F11.8 10mW/m2/nm F6 AU Mic density flux at 1 a.u. 77- 86 E10.8 10mW/m2/nm F7 ?=0 CoRot-7 density flux at 1 a.u. 88- 97 E10.8 10mW/m2/nm F8 GAT 1370 density flux at 1 a.u. 99- 108 E10.8 10mW/m2/nm F9 GJ 1214 density flux at 1 a.u. 110- 119 E10.8 10mW/m2/nm F10 GJ 3470 density flux at 1 a.u. 121- 130 E10.8 10mW/m2/nm F11 GJ 411 density flux at 1 a.u. 132- 141 E10.8 10mW/m2/nm F12 GJ 486 density flux at 1 a.u. 143- 152 E10.8 10mW/m2/nm F13 GJ 806 density flux at 1 a.u. 154- 163 E10.8 10mW/m2/nm F14 GJ 9827 density flux at 1 a.u. 165- 175 F11.6 10mW/m2/nm F15 GQ Lup density flux at 1 a.u. 177- 186 E10.8 10mW/m2/nm F16 Gj 12 density flux at 1 a.u. 188- 197 E10.8 10mW/m2/nm F17 Gj 357 density flux at 1 a.u. 199- 208 E10.8 10mW/m2/nm F18 Gj 436 density flux at 1 a.u. 210- 219 E10.8 10mW/m2/nm F19 Gj 832 density flux at 1 a.u. 221- 230 E10.8 10mW/m2/nm F20 Gl 317 density flux at 1 a.u. 232- 241 E10.8 10mW/m2/nm F21 Gl 674 density flux at 1 a.u. 243- 252 E10.8 10mW/m2/nm F22 Gl 86 density flux at 1 a.u. 254- 263 E10.8 10mW/m2/nm F23 Gl 876 density flux at 1 a.u. 265- 274 E10.8 10mW/m2/nm F24 ?=0 HAT-p-1 density flux at 1 a.u. 276- 285 E10.8 10mW/m2/nm F25 HAT-p-11 density flux at 1 a.u. 287- 296 E10.8 10mW/m2/nm F26 ?=0 HAT-p-12 density flux at 1 a.u. 298- 307 E10.8 10mW/m2/nm F27 HAT-p-32 density flux at 1 a.u. 309- 318 E10.8 10mW/m2/nm F28 ?=0 HD 101930 density flux at 1 a.u. 320- 329 E10.8 10mW/m2/nm F29 HD 102195 density flux at 1 a.u. 331- 340 E10.8 10mW/m2/nm F30 HD 108147 density flux at 1 a.u. 342- 351 E10.8 10mW/m2/nm F31 ?=0 HD 111232 density flux at 1 a.u. 353- 362 E10.8 10mW/m2/nm F32 ?=0 HD 114386 density flux at 1 a.u. 364- 373 E10.8 10mW/m2/nm F33 ?=0 HD 114762 density flux at 1 a.u. 375- 384 E10.8 10mW/m2/nm F34 ?=0 HD 114783 density flux at 1 a.u. 386- 395 E10.8 10mW/m2/nm F35 HD 130322 density flux at 1 a.u. 397- 406 E10.8 10mW/m2/nm F36 HD 149026 density flux at 1 a.u. 408- 417 E10.8 10mW/m2/nm F37 HD 154345 density flux at 1 a.u. 419- 428 E10.8 10mW/m2/nm F38 ?=0 HD 164922 density flux at 1 a.u. 430- 439 E10.8 10mW/m2/nm F39 HD 179949 density flux at 1 a.u. 441- 450 E10.8 10mW/m2/nm F40 ?=0 HD 187123 density flux at 1 a.u. 452- 461 E10.8 10mW/m2/nm F41 HD 189733 density flux at 1 a.u. 463- 472 E10.8 10mW/m2/nm F42 ?=0 HD 190360 density flux at 1 a.u. 474- 483 E10.8 10mW/m2/nm F43 ?=0 HD 195019 density flux at 1 a.u. 485- 494 E10.8 10mW/m2/nm F44 ?=0 HD 201585 density flux at 1 a.u. 496- 505 E10.7 10mW/m2/nm F45 HD 20367 density flux at 1 a.u. 507- 516 E10.8 10mW/m2/nm F46 ?=0 HD 209458 density flux at 1 a.u. 518- 527 E10.8 10mW/m2/nm F47 HD 216435 density flux at 1 a.u. 529- 538 E10.8 10mW/m2/nm F48 ?=0 HD 216437 density flux at 1 a.u. 540- 549 E10.8 10mW/m2/nm F49 ?=0 HD 217107 density flux at 1 a.u. 551- 560 E10.8 10mW/m2/nm F50 HD 218566 density flux at 1 a.u. 562- 571 E10.8 10mW/m2/nm F51 HD 235088 density flux at 1 a.u. 573- 582 E10.8 10mW/m2/nm F52 ?=0 HD 27442 density flux at 1 a.u. 584- 593 E10.8 10mW/m2/nm F53 HD 283636 density flux at 1 a.u. 595- 604 E10.8 10mW/m2/nm F54 HD 330075 density flux at 1 a.u. 606- 615 E10.8 10mW/m2/nm F55 ?=0 HD 4308 density flux at 1 a.u. 617- 626 E10.8 10mW/m2/nm F56 HD 46375 density flux at 1 a.u. 628- 637 E10.8 10mW/m2/nm F57 HD 49674 density flux at 1 a.u. 639- 648 E10.8 10mW/m2/nm F58 ?=0 HD 50554 density flux at 1 a.u. 650- 659 E10.8 10mW/m2/nm F59 ?=0 HD 52265 density flux at 1 a.u. 661- 670 E10.8 10mW/m2/nm F60 HD 63433 density flux at 1 a.u. 672- 681 E10.8 10mW/m2/nm F61 HD 70642 density flux at 1 a.u. 683- 692 E10.8 10mW/m2/nm F62 HD 73583 density flux at 1 a.u. 694- 703 E10.8 10mW/m2/nm F63 ?=0 HD 75289 density flux at 1 a.u. 705- 714 E10.8 10mW/m2/nm F64 HD 93083 density flux at 1 a.u. 716- 725 E10.8 10mW/m2/nm F65 ?=0 HD 95089 density flux at 1 a.u. 727- 736 E10.8 10mW/m2/nm F66 HD 97658 density flux at 1 a.u. 738- 747 E10.8 10mW/m2/nm F67 HD 99492 density flux at 1 a.u. 749- 758 E10.8 10mW/m2/nm F68 HR 810 density flux at 1 a.u. 760- 769 E10.8 10mW/m2/nm F69 K2-100 density flux at 1 a.u. 771- 780 E10.8 10mW/m2/nm F70 K2-136 density flux at 1 a.u. 782- 791 E10.8 10mW/m2/nm F71 KELT-7 density flux at 1 a.u. 793- 802 E10.8 10mW/m2/nm F72 ?=0 KELT-8 density flux at 1 a.u. 804- 813 E10.8 10mW/m2/nm F73 ?=0 KELT-9 density flux at 1 a.u. 815- 826 F12.8 10mW/m2/nm F74 NGC 2423 3 density flux at 1 a.u. 828- 837 E10.8 10mW/m2/nm F75 Proxima Cen density flux at 1 a.u. 839- 848 E10.8 10mW/m2/nm F76 ?=0 TOI 2134 density flux at 1 a.u. 850- 859 E10.8 10mW/m2/nm F77 TOI 836 density flux at 1 a.u. 861- 870 E10.8 10mW/m2/nm F78 Trappist-1 density flux at 1 a.u. 872- 881 E10.8 10mW/m2/nm F79 Ups And density flux at 1 a.u. 883- 893 F11.7 10mW/m2/nm F80 V1298 Tau density flux at 1 a.u. 895- 904 E10.8 10mW/m2/nm F81 WASP-107 density flux at 1 a.u. 906- 915 E10.8 10mW/m2/nm F82 ?=0 WASP-12 density flux at 1 a.u. 917- 926 E10.8 10mW/m2/nm F83 ?=0 WASP-127 density flux at 1 a.u. 928- 937 E10.8 10mW/m2/nm F84 ?=0 WASP-13 density flux at 1 a.u. 939- 948 E10.8 10mW/m2/nm F85 ?=0 WASP-39 density flux at 1 a.u. 950- 959 E10.8 10mW/m2/nm F86 WASP-69 density flux at 1 a.u. 961- 970 E10.8 10mW/m2/nm F87 ?=0 WASP-76 density flux at 1 a.u. 972- 981 E10.8 10mW/m2/nm F88 WASP-80 density flux at 1 a.u. 983- 992 E10.8 10mW/m2/nm F89 beta Gem density flux at 1 a.u. 994-1003 E10.8 10mW/m2/nm F90 ?=0 beta Pic density flux at 1 a.u. 1005-1014 E10.8 10mW/m2/nm F91 epsilon Eri density flux at 1 a.u. 1016-1025 E10.8 10mW/m2/nm F92 ?=0 mu Ara density flux at 1 a.u. 1027-1036 E10.8 10mW/m2/nm F93 tau Boo density flux at 1 a.u. 1038-1047 E10.8 10mW/m2/nm F94 ?=0 51 Peg density flux at 1 a.u. 1049-1058 E10.8 10mW/m2/nm F95 ?=0 TWA 27A density flux at 1 a.u. 1060-1069 E10.8 10mW/m2/nm F96 HR 8799 density flux at 1 a.u. 1071-1081 F11.8 10mW/m2/nm F97 AD Leo density flux at 1 a.u. 1083-1092 E10.8 10mW/m2/nm F98 GJ 699 density flux at 1 a.u. 1094-1103 E10.8 10mW/m2/nm F99 WASP 52 density flux at 1 a.u. 1105-1114 E10.8 10mW/m2/nm F100 WASP 77A density flux at 1 a.u. -------------------------------------------------------------------------------- Acknowledgements: Jorge Sanz-Forcada, jsanz(at)cab.inta-csic.es
(End) Patricia Vannier [CDS] 20-Dec-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line