J/A+A/694/A235           CO-CHANGES II.                           (Jiang+, 2025)

CO-CHANGES. II: Spatially resolved IRAM 30M CO line observations of 23 nearby edge-on spiral galaxies. Jiang Y., Li J.-T., Tan Q.-H., Ji L., Bregman J.N., Wang Q.D., Wang J.-F., Lu L.-Y., Jiang X.-J. <Astron. Astrophys. 694, A235 (2025)> =2025A&A...694A.235J 2025A&A...694A.235J (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, nearby ; Galaxy catalogs ; Carbon monoxide ; Interstellar medium ; Radio sources Keywords: ISM: molecules - galaxies: ISM - galaxies: spiral - galaxies: star formation Abstract: Molecular gas, as the fuel for star formation, and its relationship with atomic gas are crucial for understanding how galaxies regulate their star forming (SF) activities. We conducted IRAM 30m observations of 23 nearby spiral galaxies from the CHANG-ES project to investigated the distribution of molecular gas and the Kennicutt-Schmidt law. Combining these results with atomic gas masses from previous studies, we aim to investigate the scaling relations that connect the molecular and atomic gas masses with stellar masses and the baryonic Tully-Fisher relation. Based on spatially resolved observations of the three CO lines, we calculated the total molecular gas masses, the ratios between different CO lines, and derived physical parameters such as temperature and optical depth. The median line ratios for nuclear/disk regions are 8.6/6.1 (12CO/13CO(1-0)) and 0.53/0.39 (12CO(2-1/1-0)). Molecular gas mass derived from 13CO is correlated but systematically lower than that from 12CO. Most galaxies follow the spatially resolved SF scaling relation with a median gas depletion timescale of approximately 1Gyr, while a few exhibit shorter timescales of approximately 0.1Gyr. The molecular-to-atomic gas mass ratio correlates strongly with stellar mass, consistent with previous studies. Galaxies with lower stellar masses show an excess of atomic gas, indicating less efficient conversion to molecular gas. Most galaxies tightly follow the baryonic Tully-Fisher relation, but NGC 2992 and NGC 4594 deviate from the relation due to different physical factors. We find that the ratio of the cold gas (comprising molecular and atomic gas) to the total baryon mass decreases with the gravitational potential of the galaxy, as traced by rotation velocity, which could be due to gas consumption in SF or being heated to the hot phase. Description: These tables correspond to the two long tables (Table 2 and Table 3) in the paper. Table 2 is the observation log for 22 galaxies in the CO-CHANGES sample. For each galaxy, we selected 3 to 13 single- point observation positions. The table 3 contains the integrated intensities of the three CO spectra at each position, the fitted line center velocities, and the physical parameters corrected for beam dilution, including molecular line ratios, kinematic temperatures, and optical depths calculated under the LTE assumption. NGC 4594 is not included in those tables, there are in CO-CHANGES Paper I (Jiang et al., 2024MNRAS.528.4160J 2024MNRAS.528.4160J). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 77 23 Parameters of the sample galaxies table2.dat 113 157 IRAM 30m observation log table3.dat 174 157 Observed and derived parameters of the CO lines -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Galaxy Galaxy name 10- 14 F5.2 Mpc Dist Distance is obtained from Vargas et al. (2019ApJ...881...26V 2019ApJ...881...26V) 16- 19 F4.1 --- Mtype The morphological type code (1) 21- 23 F3.1 --- e_Mtype The morphological type code error 25- 29 F5.1 km/s Vrot The maximum atomic gas rotation velocity (2) 31- 35 F5.2 kpc Diam Diameter derived from 22um data by Wiegert et al. (2015AJ....150...81W 2015AJ....150...81W, Cat. J/AJ/150/81) 37- 42 F6.3 10+10Msun M* The stellar mass (3) 44- 48 F5.3 10+10Msun e_M* The stellar mass error 50- 54 F5.3 10+10Msun MHI The total atomic gas mass (4) 55 A1 --- r_MHI The source of the HI flux, the detailed calculation methods are summarized in Sect. 4.1. (5) 57- 61 F5.2 Msun/yr SFR ?=- The revised star formation rate (6) 63- 66 F4.2 Msun/yr e_SFR ? The revised star formation rate error 68- 72 F5.2 10-3Msun/yr/kpc2 SSFR ?=- The surface density of SFR (7) 74- 77 F4.2 10-3Msun/yr/kpc2 e_SSFR ? The surface density of SFR error -------------------------------------------------------------------------------- Note (1): from de Vaucouleurs et al. (1991, Cat. VII/155), except for NGC 3448, which is from Huchra et al. (2012ApJS..199...26H 2012ApJS..199...26H, Cat. J/ApJS/199/26). Note (2): corrected for inclination obtained from HyperLeda (http://leda.univ-lyon1.fr/), as also noted in Makarov et al. (2014A&A...570A..13M 2014A&A...570A..13M). Note (3): from Li et al. (2016MNRAS.456.1723L 2016MNRAS.456.1723L), which is derived from the 2MASS K-band apparent magnitude (Skrutskie et al., 2006, Cat. VII/233). Note (4): is directly available for 14 galaxies from Zheng et al. (2022MNRAS.513.1329Z 2022MNRAS.513.1329Z). Note (5): References and corresponding observational instruments are as follows: a = Chaves & Irwin (2001ApJ...557..646C 2001ApJ...557..646C) with VLA L-band CnB-array b = Zheng et al. (2022MNRAS.513.1329Z 2022MNRAS.513.1329Z) with VLA L-band C-array c = Courtois & Tully (2015MNRAS.447.1531C 2015MNRAS.447.1531C, Cat. J/MNRAS/447/1531), who uniformly processed data from various telescope (NGC 2820 and NGC 3735 from Green Bank 42m; NGC 3432, NGC 4244 and NGC 4594 from Robert C. Byrd Green Bank Telescope; NGC 4845 from Arecibo with line feed system.) d = Huchtmeier (1982A&A...110..121H 1982A&A...110..121H) with NRAO 91m; e = Davis & Seaquist (1983ApJS...53..269D 1983ApJS...53..269D) with NRAO 91m. Note (6): from Vargas et al. (2019ApJ...881...26V 2019ApJ...881...26V), calculated using a combination of Hα and 22um data. Note (7): and calculated using the 22um diameter and obtained from Vargas et al. (2019ApJ...881...26V 2019ApJ...881...26V) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Name, NGCNNNN-NN or UGCNNNNN-NN (1) 12- 13 I2 h RAh Right ascension (J2000) 15- 16 I2 min RAm Right ascension (J2000) 18- 22 F5.2 s RAs Right ascension (J2000) 24 A1 --- DE- Declination sign (J2000) 25- 26 I2 deg DEd Declination (J2000) 28- 29 I2 arcmin DEm Declination (J2000) 31- 36 F6.3 arcsec DEs Declination (J2000) 38- 47 A10 "date" Date1 Observation date 48 A1 --- --- [,] 50- 59 A10 "date" Date2 Observation date 60 A1 --- --- [,] 62- 71 A10 "date" Date3 Observation date 73- 76 F4.2 --- tau225GHz The average opacity at 225GHz during observation dates 78 I1 --- Nobs The total number of observation scans at each position, each scan having an effective on-source integration time of 9.8 minutes 80- 84 F5.2 min Texp12CO The total on-source integration time at each position for the 12CO(1-0) (2) 86- 90 F5.2 min Texp13CO The total on-source integration time at each position for the 13CO(1-0) (2) 92- 96 F5.2 min TexpCO21 The total on-source integration time at each position for the 12CO(2-1) (2) 98-102 F5.2 mk rms12CO The root mean square for the 12CO(1-0) (2) 104-107 F4.2 mk rms13CO The root mean square for the 13CO(1-0) (2) 109-113 F5.2 mk rmsCO21 The root mean square for the 12CO(2-1) (2) -------------------------------------------------------------------------------- Note (1): Some observation positions are not on the galaxy disk; the location may correspond to a companion galaxy or a non-disk point (possibly located halfway to the companion galaxy). Note (2): Those time and rms including both vertical and horizontal polarization components. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Name, NGCNNNN-NN or UGCNNNNN-NN 12- 16 F5.1 kpc Dist ?=- The projection distance to the minor axis of the galaxy 18 A1 --- l_I12CO Limit flag on I12CO 19- 22 F4.1 K.km/s I12CO The integrated line intensity of 12CO(1-0) (1) 24- 26 F3.1 K.km/s e_I12CO ? The integrated line intensity of 12CO(1-0) error (1) 28- 33 F6.1 km/s v012CO ?=- The centroid velocity of 12CO(1-0) 35- 38 F4.1 km/s E_v012CO ? The centroid velocity of 12CO(1-0) error (upper value) 41- 44 F4.1 km/s e_v012CO ? The centroid velocity of 12CO(1-0) error (lower value) 46 A1 --- l_I13CO Limit file on I13CO 47- 49 F3.1 K.km/s I13CO The integrated line intensity of 13CO(1-0) (1) 51- 53 F3.1 K.km/s e_I13CO ? The integrated line intensity of 13CO(1-0) error (1) 55- 60 F6.1 km/s v013CO ?=- The centroid velocity of 13CO(1-0) 62- 65 F4.1 km/s E_v013CO ? The centroid velocity of 13CO(1-0) error (upper value) 68- 71 F4.1 km/s e_v013CO ? The centroid velocity of 13CO(1-0) error (lower value) 73 A1 --- l_ICO21 Limit flag on ICO21 74- 78 F5.1 K.km/s ICO21 The integrated line intensity of 12CO(2-1) (1) 80- 82 F3.1 K.km/s e_ICO21 ? The integrated line intensity of 12CO(2-1) error (1) 85- 90 F6.1 km/s v0CO21 ?=- The centroid velocity of 12CO(2-1) 92- 95 F4.1 km/s E_v0CO21 ? The centroid velocity of 12CO(2-1) error (upper value) 98-101 F4.1 km/s e_v0CO21 ? The centroid velocity of 12CO(2-1) error (lower value) 104 A1 --- l_R12CO/13CO Limit flag on R12CO/13CO 105-108 F4.1 --- R12CO/13CO ?=- The intensity line ratios of 12CO/13CO(1-0) (2) 110-112 F3.1 --- E_R12CO/13CO ? The intensity line ratios of 12CO/13CO (1-0) error (upper value) (2) 115-117 F3.1 --- e_R12CO/13CO ? The intensity line ratios of 12CO/13CO (1-0) error (lower value) (2) 119 A1 --- l_RCO21/CO10 Limit flag on RCO21/CO10 120-124 F5.3 --- RCO21/CO10 ?=- The intensity line ratio of 12CO(2-1)/12CO(1-0) (2) 126-130 F5.3 --- E_RCO21/CO10 ?=- The intensity line ratio of 12CO(2-1)/12CO(1-0) error (upper value) (2) 132-136 F5.3 --- e_RCO21/CO10 ?=- The intensity line ratio of 12CO(2-1)/12CO(1-0) error (lower value) (2) 138 A1 --- l_Tau13CO Limit flag on Tau13co 139-143 F5.3 --- Tau13CO ?=- The optical depth derived under LTE 145-149 F5.3 --- E_Tau13CO ?=- The optical depth derived under LTE error (upper value) 151-155 F5.3 --- e_Tau13CO ?=- The optical depth derived under LTE error (lower value) 158-162 F5.1 K Tkin ?=- The kinetic temperature derived under LTE 164-168 F5.1 K E_Tkin ?=- The kinetic temperature derived under LTE error (upper value) 171-174 F4.1 K e_Tkin ?=- The kinetic temperature derived under LTE error (lower value) -------------------------------------------------------------------------------- Note (1): All intensity have been corrected for the main beam and forward efficiencies. Note (2): Those ratio are corrected for beam dilution. -------------------------------------------------------------------------------- Acknowledgements: Yan Jiang, astroyanjiang(at)gmail.com References: Jiang et al., Paper I 2024MNRAS.528.4160J 2024MNRAS.528.4160J
(End) Patricia Vannier [CDS] 19-Dec-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line