J/A+A/695/A131      Mass-radius relation of white dwarfs          (Raddi+, 2025)

Testing the mass-radius relation of white dwarfs in common proper-motion pairs. I. Hydrogen-dominated atmospheres. Raddi R., Rebassa-Mansergas A., Torres S., Camisassa M.E., Napiwotzki R., Koester D., Tremblay P.-E., Heber U., Althaus L. <Astron. Astrophys. 695, A131 (2025)> =2025A&A...695A.131R 2025A&A...695A.131R (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Stars, white dwarf ; Stars, masses ; Stars, diameters ; Proper motions ; Optical Keywords: techniques: radial velocities - binaries: visual - white dwarfs Abstract: White dwarf masses are among the most important properties used to constrain their past and future evolution. Direct estimates of white dwarf masses are crucial for assessing the validity of theoretical evolutionary models and methods of analysis. The main goal of this work was to measure the masses and radii of white dwarfs that belong to widely separated, common proper-motion binaries with non-degenerate companions. These can be assessed, independently from theoretical mass-radius relations, through measurements of gravitational redshifts and photometric radii. We studied 50 white dwarfs with hydrogen-dominated atmospheres, performing a detailed analysis of high-resolution (R∼18500) spectra via state-of-the-art grids of synthetic models and specialized software. We measured accurate radial velocities from the Hα and Hβ line cores to obtain the white dwarf gravitational redshifts. Jointly with a photometric analysis, formalized by a Bayesian inference method, we measured precise radii for the white dwarfs in our sample, which allowed us to directly measure the white dwarf masses from their gravitational redshifts. The distributions of measured masses and radii agree within 6% (at the 1-σ level) from the theoretical mass-radius relation, thus delivering a much smaller scatter in comparison with previous analyses that used gravitational redshift measurements from low-resolution spectra. Our comparison against model-dependent spectroscopic estimates produces a larger scatter of 15% on the mass determinations. We find an agreement within ∼10% from previous model-based, photometric mass estimates from the literature. Combining gravitational redshift measurements and photometric analysis of white dwarfs delivers precise and accurate empirical estimates of their masses and radii. This work confirms the reliability of the theoretical mass-radius relation from the lightest to the heaviest white dwarfs in our sample (∼0.38-1.3M). Description: In this work, we have presented the high-resolution spectroscopic follow-up of 48 white dwarfs with VLT/UVES. The observed objects belong to widely separated, common proper motion pairs with non-degenerate stars. We focused our analysis on the 33 objects classified as DA white dwarfs, to which we added 17 more objects of the same spectral class that are drawn from the SPY survey (Napiwotzki et al., 2020A&A...638A.131N 2020A&A...638A.131N, Cat. J/A+A/638/A131), also observed with VLT/UVES and belonging to common proper motion pairs. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tableb1.dat 90 65 Relevant Gaia parameters of the studied white dwarfs tableb2.dat 116 66 Relevant Gaia parameters of the wide binary companions tabled1.dat 157 51 Spectroscopic parameters tableg1.dat 116 52 Photometric parameters of the studied white dwarfs -------------------------------------------------------------------------------- See also: I/355 : Gaia DR3 Part 1. Main source (Gaia Collaboration, 2022) Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- SName Short Name (G1) 13- 31 I19 --- GaiaDR3 Gaia DR3 source_id 33- 35 A3 --- Type White dwarf type assigned upon visual inspection of the spectra. 37- 41 F5.2 arcsec plx Parallax 43- 46 F4.2 arcsec e_plx Parallax error 48- 54 F7.2 mas/yr pmRAcosDE Proper motion along RA, pmRA*cosDE 56- 59 F4.2 mas/yr e_pmRAcosDE Proper motion along RA, pmRA*cosDE, error 61- 67 F7.2 mas/yr pmDE Proper motion along DE 69- 72 F4.2 mas/yr e_pmDE Proper motion along DE error 74- 78 F5.2 mag Gmag Gaia G magnitude 80- 84 F5.2 mag BPmag Gaia BP magnitude 86- 90 F5.2 mag RPmag Gaia RP magnitude -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- SName Short Name of the corresponding white dwarf companions (G1) 12 A1 --- n_SName [n] n = no deblended transits 14- 32 I19 --- GaiaDR3 Gaia DR3 source_id 34- 38 F5.2 arcsec plx Parallax 40- 43 F4.2 arcsec e_plx Parallax error 45- 51 F7.2 mas/yr pmRAcosDE Proper motion along RA, pmRA*cosDE 53- 56 F4.2 mas/yr e_pmRAcosDE Proper motion along RA, pmRA*cosDE, error 58- 64 F7.2 mas/yr pmDE Proper motion along DE 66- 69 F4.2 mas/yr e_pmDE Proper motion along DE error 71- 75 F5.2 mag Gmag Gaia G magnitude 77- 81 F5.2 mag BPmag Gaia BP magnitude 83- 87 F5.2 mag RPmag Gaia RP magnitude 89- 93 F5.1 arcsec Sep Separation 95- 99 I5 au a Semi-major axis 101-104 F4.2 km/s DeltaV Velocity difference 106-111 F6.2 km/s RV Radial velocity 113-116 F4.2 km/s e_RV Radial velocity error -------------------------------------------------------------------------------- Byte-by-byte Description of file: tabled1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- SName Short Name (G1) 12 A1 --- n_SName [cd] Note on SName (1) 14- 18 I5 K Teff1 ?=- Koester 1D Models effective temperature 20- 22 I3 K e_Teff1 ? Koester 1D Models effective temperature error 24- 27 F4.2 [cm/s2] logg1 ?=- Koester 1D Models surface gravity 29- 32 F4.2 [cm/s2] e_logg1 ? Koester 1D Models surface gravity error 34- 37 I4 K DTeff3D1 ? Koester 1D Models effective temperature difference 39- 43 F5.2 [cm/s2] Dlogg1 ? Koester 1D Models surface gravity difference 45- 49 F5.3 Msun Mass1 ?=- Koester 1D Models mass (5) 51- 55 F5.3 Msun e_Mass1 ? Koester 1D Models mass error 57- 61 F5.1 km/s v(Ha+Hb)1 ?=- Koester 1D Models Halpha+Hbeta velocity (2) 63- 65 F3.1 km/s e_v(Ha+Hb)1 ? Koester 1D Models Halpha+Hbeta velocity error 66- 67 A2 --- n_v(Ha+Hb)1 [gl ] Note on v(Ha+Hb)1 (4) 69- 73 F5.1 km/s vHa1 ?=- Koester 1D Models Halpha velocity (2) 75- 78 F4.1 km/s e_vHa1 ? Koester 1D Models Halpha velocity error 79- 80 A2 --- n_vHa1 [gl ] Note on vHa1 (4) 82- 86 I5 K Teff2 ?=- Tremblay 3D Models effective temperature 88- 90 I3 K e_Teff2 ? Tremblay 3D Models effective temperature error 92- 95 F4.2 [cm/s2] logg2 ?=- Tremblay 3D Models surface gravity 97-100 F4.2 [cm/s2] e_logg2 ? Tremblay 3D Models surface gravity error 102-106 F5.3 Msun Mass2 ?=- Tremblay 3D Models mass (5) 108-112 F5.3 Msun e_Mass2 ? Tremblay 3D Models mass error 114-118 F5.1 km/s v(Ha+Hb)2 ?=- Tremblay 3D Models Halpha+Hbeta velocity (3) 120-122 F3.1 km/s e_v(Ha+Hb)2 ? Tremblay 3D Models Halpha+Hbeta velocity error 123 A1 --- n_v(Ha+Hb)2 [gl] Note on v(Ha+Hb)2 (4) 126-130 F5.1 km/s vHa2 ?=- Tremblay 3D Models Halpha velocity (3) 132-135 F4.1 km/s e_vHa2 ? Tremblay 3D Models Halpha velocity error 136 A1 --- n_vHa2 [gl] Note on vHa2 (4) 139-143 F5.1 km/s v(Ha+Hb)3 ?=- Gaussian fit Halpha+Hbeta velocity (2) 145-147 F3.1 km/s e_v(Ha+Hb)3 ? Gaussian fit Halpha+Hbeta velocity error 149-153 F5.1 km/s vHa3 ?=- Gaussian fit Halpha velocity (2) 155-157 F3.1 km/s e_vHa3 ? Gaussian fit Halpha velocity error -------------------------------------------------------------------------------- Note (1): Note as follows: c = vWD measured from the Zeeman lπ component d = using the spectra from the SPY project Note (2): measured via model fit of both the Hα and Hβ lines. Note (3): measured via model ift of the H[alpha line only. Note (4): g and l indicate whether the radial-velocity fit using the model spectra also required additional Gaussian and Lorentzian functions to reproduce the line cores. Note (5): Spectroscopic masses are estimated via interpolation of evolutionary tracks (Althaus et al., 2013A&A...557A..19A 2013A&A...557A..19A, Cat. J/A+A/557/A19; Camisassa et al., 2016ApJ...823..158C 2016ApJ...823..158C and 2019A&A...625A..87C 2019A&A...625A..87C, Cat. J/A+A/625/A87). -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableg1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- SName Short Name (G1) 12 A1 --- n_SName [ab] Note on Name 14- 18 I5 K Teff Effective temperature 20- 23 I4 K e_Teff Effective temperature error 25- 30 F6.4 Rsun R Radius 32- 34 I3 pc d Distance 36- 40 F5.3 mag A(55) Extinction at 5500Å 42- 45 F4.2 Msun Mass1 Mass averaged over the radial estimates of v(Hα+Hβ)WD 47- 50 F4.2 Msun e_Mass1 Mass error over the radial estimates of v(Hα+Hβ)WD 52- 56 F5.2 --- rho(M-R)1 Correlation among mass and radius over the radial estimates of v(Hα+Hβ)WD 58- 62 F5.1 km/s Vgr1 Gravitational-redshift factor over the radial estimates of v(Hα+Hβ)WD 64- 66 F3.1 km/s e_Vgr1 Gravitational-redshift factor error over the radial estimates of v(Hα+Hβ)WD 68- 72 F5.1 % DeltaR1 Difference in Radius with respect to the theoretical evolutionary tracks over the radial estimates of v(Hα+Hβ)WD 74- 78 F5.1 % DeltaM1 Difference in Mass with respect to the theoretical evolutionary tracks over the radial estimates of v(Hα+Hβ)WD 80- 83 F4.2 Msun Mass2 ? Mass over the radial estimates of v(Hα)WD 85- 88 F4.2 Msun e_Mass2 ? Mass error over the radial estimates of v(Hα)WD 90- 94 F5.2 --- rho(M-R)2 ? Correlation among mass and radius over the radial estimates of v(Hα)WD 96-100 F5.1 km/s Vgr2 ? Gravitational-redshift factor over the radial estimates of v(Hα)WD 102-104 F3.1 km/s e_Vgr2 ? Gravitational-redshift factor error over the radial estimates of v(Hα)WD 106-110 F5.1 % DeltaR2 ? Difference in Radius with respect to the theoretical evolutionary tracks over the radial estimates of v(Hα)WD 112-116 F5.1 % DeltaM2 ? Difference in Mass with respect to the theoretical evolutionary tracks over the radial estimates of v(Hα)WD -------------------------------------------------------------------------------- Global notes: Note (G1): The short name of the new targets is based on the Gaia DR3 coordinates in the HHMM+DDMM format (else HEHHMM+DDMM, HSHHMM+DDMM or WDHHMM+DDd for the SPY sample). WD1544-377 was re-observed for comparison purposes. -------------------------------------------------------------------------------- History: Copied at https://zenodo.org/records/14793626
(End) Patricia Vannier [CDS] 23-May-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line