J/A+A/695/A163      CO LF and molecular gas mass density          (Bollo+, 2025)

ALMACAL. XIII. Evolution of the CO luminosity function and the molecular gas mass density out to z ∼ 6. Bollo V., Peroux C., Zwaan M., Hamanowicz A., Chen J., Weng S., Lagos C. del P., Bravo M., Ivison R.J., Biggs A. <Astron. Astrophys. 695, A163 (2025)> =2025A&A...695A.163B 2025A&A...695A.163B (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies ; Molecular clouds ; Interstellar medium ; Carbon monoxide Keywords: evolution - galaxy evolution - intergalactic medium - galaxies: ISM - galaxies: luminosity function - mass function Abstract: Cold molecular gas, largely traced by CO emission, is the primary fuel for star formation, making it essential for understanding galaxy evolution. ALMA has made significant progress in the study of the cosmic evolution of cold molecular gas. Here, we exploit the ALMACAL survey to address issues relating to small sample sizes and cosmic variance, utilising calibration data from ALMA to compile a statistically significant and essentially unbiased sample of CO-selected galaxies. By employing a novel statistical approach to emission-line classification using semi-analytical models, we place strong constraints on the CO luminosity function and the cosmic evolution of molecular gas mass density back to z∼6. The cosmic molecular gas mass density increases with redshift, peaking around z∼1.5, then slowly declines towards higher redshifts by ∼1dex. Our findings confirm the key role of molecular gas in fueling star formation. We provide new insights into the redshift evolution of baryonic components in the Universe. The ratio of molecular gas-to-stellar mass density is consistent with the so-called 'bathtub model' of baryons, indicating a continuous replenishment of gas. The cosmic gas depletion timescale, estimated on a global scale, is shown to be fairly constant at all redshifts. We emphasise the importance of surveys using multiple small fields rather than a single contiguous area to mitigate the effects of cosmic variance. Description: This work uses the latest data release, which comprises the ALMA calibrator data taken up until 2022 May, so-called ALMACAL-22 (Bollo et al., 2024A&A...690A.258B 2024A&A...690A.258B). The final catalogue was created after a thorough visual inspection of all detections, along with an analysis of the spectra and the integrated emission-line map across the spectral range of the detected lines. We select candidates with S/N>4 and a clear peak in the moment map compared to the background noise. Duplicate detections - e.g. those offset by only a few pixels but originating from the same region - were excluded. The final catalogue of CO emitters includes 87 sources. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1.dat 208 87 Physical properties of the ALMACAL-22 detections -------------------------------------------------------------------------------- See also: J/MNRAS/478/1512 : ALMA calibrator continuum observations catalog (Bonato+, 2018) Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Object name (JHHMM+DDMM) 12- 14 I3 --- NID Object identifier 16- 33 F18.14 GHz Freq Observed frequency 35- 53 F19.15 mJy.km/s Flux Median flux density 55- 74 F20.16 mJy.km/s e_Flux Negative error on flux 76- 99 E24.16 mJy.km/s E_Flux Positive error on flux 101-120 F20.15 km/s FWHM Median full-width at half maximum 122-141 F20.16 km/s e_FWHM Negative error on FWHM 143-163 F21.16 km/s E_FWHM Positive error on FWHM 165-169 F5.2 --- S/N Signal-to-noise ratio 171-188 F18.16 % Compl Sample completeness factor 190-208 F19.17 % Rel Reliability of detection -------------------------------------------------------------------------------- Acknowledgements: Victoria Bollo, victoria.bollo(at)eso.org References : Oteo et al., Paper I 2016ApJ...822...36O 2016ApJ...822...36O Oteo et al., Paper II 2017ApJ...837..182O 2017ApJ...837..182O Klitsch et al., Paper III 2018MNRAS.475..492K 2018MNRAS.475..492K Bonato et al., Paper IV 2018MNRAS.478.1512B 2018MNRAS.478.1512B, Cat. J/MNRAS/478/1512 Klitsch et al., Paper V 2019MNRAS.482L..65K 2019MNRAS.482L..65K Klitsch et al., Paper VI 2019MNRAS.490.1220K 2019MNRAS.490.1220K Klitsch et al., Paper VII 2020MNRAS.495.2332K 2020MNRAS.495.2332K Hamanowicz et al., Paper VIII 2023MNRAS.519...34H 2023MNRAS.519...34H Chen et al., Paper IX 2023MNRAS.518.1378C 2023MNRAS.518.1378C Klitsch et al., Paper X 2023MNRAS.523L..46K 2023MNRAS.523L..46K Chen et al., Paper XI 2023A&A...675L..10C 2023A&A...675L..10C Bollo et al., Paper XII 2024A&A...690A.258B 2024A&A...690A.258B
(End) Patricia Vannier [CDS] 12-Feb-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line