J/A+A/695/A29      SNe 2021acya, 2021adxl, 2022qml, and 2022wed (Salmaso+, 2025)

The diversity of strongly-interacting Type IIn supernovae. Salmaso I., Cappellaro E., Tartaglia L., Anderson J.P., Benetti S., Bronikowski M., Cai Y.-Z., Charalampopoulos P., Chen T.-W., Concepcion E., Elias-Rosa N., Galbany L., Gromadzki M., Gutierrez C.P., Kankare E., Lundqvist P., Matilainen K., Mazzali P.A., Moran S., Mueller-Bravo T.E., Nicholl M., Pastorello A., Pessi P.J., Pessi T., Petrushevska T., Pignata G., Reguitti A., Sollerman J., Srivastav S., Stritzinger M., Tomasella L., Valerin G. <Astron. Astrophys. 695, A29 (2025)> =2025A&A...695A..29S 2025A&A...695A..29S
ADC_Keywords: Supernovae ; Photometry, UBV ; Photometry, infrared ; Photometry, ugriz ; Photometry, ultraviolet ; Spectroscopy Keywords: supernovae: general - supernovae: individual: SN 2021acya - supernovae: individual: SN 2021adxl - supernovae: individual: SN 2022qml - supernovae: individual: SN 2022wed - neutrinos Abstract: At late stages, massive stars experience strong mass-loss rates, losing their external layers and thus producing a dense H-rich circumstellar medium (CSM). After the explosion of a massive star, the collision and continued interaction of the supernova (SN) ejecta with the CSM power the SN light curve through the conversion of kinetic energy into radiation. When the interaction is strong, the light curve shows a broad peak and high luminosity that lasts for several months. For these SNe, the spectral evolution is also slower compared to non-interacting SNe. Notably, energetic shocks between the ejecta and the CSM create the ideal conditions for particle acceleration and the production of high-energy (HE) neutrinos above 1TeV. We study four strongly-interacting Type IIn SNe: 2021acya, 2021adxl, 2022qml, and 2022wed to highlight their peculiar characteristics, derive the kinetic energy of the explosion and the characteristics of the CSM, infer clues on the possible progenitors and their environment and relate them to the production of HE neutrinos. We analysed spectro-photometric data of a sample of interacting SNe to determine their common characteristics and derive physical properties (radii and masses) of the CSM and ejecta kinetic energies to compare them to HE neutrino production models. The SNe analysed in this sample exploded in dwarf, star-forming galaxies and they are consistent with energetic explosions and strong interaction with the surrounding CSM. For SNe 2021acya and 2022wed, we find high CSM masses and mass-loss rates, linking them to very massive progenitors. For SN 2021adxl, the spectral analysis and less extreme CSM mass suggest a stripped-envelope massive star as possible progenitor. SN 2022qml is marginally consistent with being a Type Ia thermonuclear explosion embedded in a dense CSM. The mass-loss rates for all SNe are consistent with the expulsion of several solar masses of material during eruptive episodes in the last few decades before the explosion. Finally, we find that the SNe in our sample are marginally consistent with HE neutrino production. Description: Photometric measurements from UV, optical and NIR instruments for SNe 2021acya, 2021adxl, 2022qml, and 2022wed are provided, together with the list of spectroscopic observations for each supernova. Phases are corrected for time dilation. Measurements performed fitting the Halpha and Hbeta lines, when visible, are also provided. The fit are composed of a narrow Lorentian and a broad Gaussian function and the reported parameters are: position of the line, Full-Width-at-Half-Maximum (FWHM), and flux. Objects: --------------------------------------------------- RA (2000) DE Designation(s) --------------------------------------------------- 04 02 13.760 -28 23 29.72 SN2021acya 11 48 06.940 -12 38 41.71 SN2021adxl = Gaia 21fcd 22 29 45.502 +13 38 24.11 SN2022qml 07 24 15.497 +19 04 52.71 SN2022wed --------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file ph21acya.dat 49 519 Photometry of SN 2021acya (table C1) ph21adxl.dat 50 419 Photometry of SN 2021adxl (table C2) ph22qml.dat 49 143 Photometry of SN 2022qml (table C3) ph22wed.dat 49 161 Photometry of SN 2022wed (table C4) ha21acya.dat 49 24 Fit on the Halpha for SN 2021acya (table C9) ha21adxl.dat 49 8 Fit on the Halpha for SN 2021adxl (table C11) ha22qml.dat 51 4 Fit on the Halpha for SN 2022qml (table C13) ha22wed.dat 49 4 Fit on the Halpha for SN 2022wed (table C15) hb21acya.dat 46 24 Fit on the Hbeta for SN 2021acya (table C10) hb21adxl.dat 46 8 Fit on the Hbeta for SN 2021adxl (table C12) hb22qml.dat 47 4 Fit on the Hbeta for SN 2022qml (table C14) hb22wed.dat 46 4 Fit on the Hbeta for SN 2022wed (table C16) sp21acya.dat 40 27 Spectral log of SN 2021acya (table C5) sp21adxl.dat 40 15 Spectral log of SN 2021adxl (table C6) sp22qml.dat 41 8 Spectral log of SN 2022qml (table C7) sp22wed.dat 40 4 Spectral log of SN 2022wed (table C8) -------------------------------------------------------------------------------- Byte-by-byte Description of file: ph*.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 F9.3 d MJD Modified Julian date 11- 16 A6 --- band Band (1) 18 A1 --- l_mag Limit flag on mag 19- 24 F6.3 mag mag Magnitude in Band 28- 32 F5.3 mag e_mag ?=- Error of magnitude in Band 36- 57 A22 --- Tel Telescope, instrument -------------------------------------------------------------------------------- Note (1): Bands are UBV JHK griz orange cyan UVW1 UVW2 UVM2 gaia.G PS1.w . -------------------------------------------------------------------------------- Byte-by-byte Description of file: ha*.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 d Phase Phase (days after explosion, corrected for time dilation) 5- 10 F6.1 0.1nm lambdaHan Halpha narrow wavelength 12- 16 F5.2 0.1nm FWHMHan Halpha narrow FWHM 18- 23 F6.2 10-18W/m2 FluxHan Halpha narrow flux (10-15erg/cm2/s) 25- 31 F7.2 0.1nm lambdaHab Halpha broad wavelength 33- 38 F6.2 0.1nm FWHMHab Halpha broad FWHM 40- 45 F6.2 10-18W/m2 FluxHab Flux Halpha broad flux (10-15erg/cm2/s) 47- 51 F5.2 0.1nm Res FWHM resolution -------------------------------------------------------------------------------- Byte-by-byte Description of file: hb*.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 d Phase Phase (days after explosion, corrected for time dilation) 5- 10 F6.1 0.1nm lambdaHbn ?=- Hbeta narrow wavelength 12- 16 F5.2 0.1nm FWHMHbn ?=- Hbeta narrow FWHM 18- 22 F5.2 10-18W/m2 FluxHbn ?=- Hbeta narrow flux (10-15erg/cm2/s) 24- 30 F7.2 0.1nm lambdaHbb ?=- Hbeta broad wavelength 32- 37 F6.2 0.1nm FWHMHbb ?=- Hbeta broad FWHM 38- 42 F5.2 10-18W/m2 FluxHbb ?=- Hbeta broad flux (10-15erg/cm2/s) 44- 47 F4.1 0.1nm Res FWHM resolution -------------------------------------------------------------------------------- Byte-by-byte Description of file: sp*.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 F9.3 d MJD Modified Julian date 11- 32 A22 --- Tel Telescope 33- 36 I4 d Phase Phase (days after explosion, corrected for time dilation) 38- 41 F4.1 0.1nm Res FWHM resolution -------------------------------------------------------------------------------- Acknowledgements: Irene Salmaso, irene.salmaso(at)inaf.it
(End) Patricia Vannier [CDS] 08-Jan-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line