J/A+A/698/A300        SLAM-payne for hot stars in LAMOST             (Sun, 2025)

A hybrid SLAM-Payne framework for atmospheric parameter and abundance determination of early-type stars from LAMOST DR9 low-resolution spectra. Sun W. <Astron. Astrophys. 698, A300 (2025)> =2025A&A...698A.300S 2025A&A...698A.300S (SIMBAD/NED BibCode)
ADC_Keywords: Stars, B-type ; Stars, A-type ; Stars, fundamental Keywords: Stars: abundances - stars: early-type - Galaxy: abundances - Galaxy: steller content Abstract: Early-type stars are key drivers of Galactic chemical evolution, enriching the interstellar medium with alpha elements through powerful stellar winds and core-collapse supernovae, fuelled by their short lifetimes and high masses. However, their spectra remain challenging to analyse due to rapid rotation, weak metal lines, and non-local thermodynamic equilibrium (NLTE) effects. While large spectroscopic surveys provide extensive low-resolution data, extracting reliable parameters remains difficult due to methodological limitations for hot stars. Our goal is to develop a unified framework that combines data-driven and synthetic spectral approaches to determine atmospheric parameters and abundances for hot stars using low-resolution spectra, thereby addressing limitations in current methodologies while retaining critical spectral information. We present a hybrid approach integrating the Stellar LAbel Machine (SLAM) and the Payne frameworks, for low-resolution (R∼1800) spectra from LAMOST DR9. Our method preserves full spectral information including Balmer series and metal-line blends, employing neural-network interpolation for efficient parameter estimation (Teff, logg, and v sin i) and abundance determination for O, Mg, Si, and Fe, across 8000K-20000K. We derive stellar parameters and abundances for 315822 stars with S/N∼10 in the r-band. Among these, we identify 3564 blue horizontal branch candidates, over 90% of which align with stellar evolutionary models of horizontal branch stars. Additionally, we detect abundance trends ([alpha/Fe]-[Fe/H]) that exhibit temperature-dependent systematics and a distinct alpha-poor stellar population within 0.0≤[Fe/H]≤0.5dex. The radial abundance gradients are negative and consistent with that derived from Cepheids, with a slope of -0.070±0.007 in [Fe/H] in the region 6≤RGC≤15kpc. Description: We present a hybrid approach integrating the Stellar LAbel Machine (SLAM) and the Payne frameworks, for low-resolution (R∼1800) spectra from LAMOST DR9. Our method preserves full spectral information including Balmer series and metal-line blends, employing neural-network interpolation for efficient parameter estimation (Teff, logg, and vsini) and abundance determination for O, Mg, Si, and Fe across 8000-20000K. We derive stellar parameters and abundances for 315822 stars with SNR>10 in the r-band. Our stellar parameter catalog contains Teff, logg, vsini, [Fe/H], [O/Fe], [Mg/Fe] and [Si/Fe] for 315822 unique stars with Teff>7000K and S/N>10 from LAMOST LRS DS9. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file catalog.dat 419 315822 Stellar parameter catalog -------------------------------------------------------------------------------- See also: I/355 : Gaia DR3 Part 1. Main source (Gaia Collaboration, 2022) Byte-by-byte Description of file: catalog.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 I9 --- ObsID LAMOST LRS unique spectrum ID 11- 21 F11.7 deg RAdeg Fiber pointing right ascension (J2000) 23- 33 E11.3 deg DEdeg Fiber pointing declination (J2000) 35- 53 I19 --- GaiaDR3 Gaia DR3 Source id 55- 73 F19.13 K Teff Effective temperature 75- 98 F24.16 K e_Teff Uncertainty of effective temperature 100-117 F18.16 [cm/s2] logg Surface gravity 119-142 F24.19 [cm/s2] e_logg Uncertainty of surface gravity 144-167 E24.16 [-] [Fe/H] Iron abundance 169-191 F23.19 [-] e_[Fe/H] Uncertainty of Iron abundance 193-212 F20.16 km/s vsini Rotational velocity 214-237 F24.17 km/s e_vsini Uncertainty of rotational velocity 239-262 E24.16 --- [O/Fe] Oxygen abundance 264-289 F26.19 --- e_[O/Fe] Uncertainty of Oxygen abundance 291-314 E24.16 --- [Mg/Fe] Magnesium abundance 316-341 F26.19 --- e_[Mg/Fe] Uncertainty of Magnesium abundance 343-366 E24.16 --- [Si/Fe] Silicon abundance 368-393 F26.19 --- e_[Si/Fe] Uncertainty of Silicon abundance 395-419 F25.17 --- chi2 ? chi-square value -------------------------------------------------------------------------------- Acknowledgements: Weijia Sun, wsun(at)aip.de
(End) Patricia Vannier [CDS] 15-May-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line