J/A+A/699/A226 Non-transiting exoplanets (Gourves+, 2025)
Non-transiting exoplanets as a means to understand star-planet interactions in
close-in systems.
Gourves C., Breton S.N., Dyrek A., Lanza A.F., Garcia R.A., Mathur S.,
Santos A.R.G., Strugarek A.
<Astron. Astrophys. 699, A226 (2025)>
=2025A&A...699A.226G 2025A&A...699A.226G (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Exoplanets ; Binaries, orbits ;
Effective temperatures ; Stars, masses ; Abundances, [Fe/H] ;
Stars, diameters
Keywords: methods: data analysis - planets and satellites: detection -
planet-star interactions - stars: low-mass - stars: solar-type
Abstract:
Previous studies showed evidence of a dearth of close-in exoplanets
around fast rotators, which can be explained by the combined action of
intense tidal and magnetic interactions between planet and their host
star. Detecting more exoplanets experiencing such interactions, with
orbits evolving on short timescales, is therefore crucial to improve
our understanding of the underlying physical mechanisms. For this
purpose, we perform a new search for close-in non-transiting substellar
companions in the Kepler data, focusing on orbital periods below 2.3
days. We focus on main-sequence solar-type stars and subgiant stars
for which a surface rotation period was measured. For each star, we
look for an excess in the power spectral density of the light curve,
that could correspond to the signature of a close-in non-transiting
companion. We compare our candidates with existing catalogues to
eliminate potential contaminants in our sample, and we visually
inspect the phase-folded light curve and its wavelet decomposition. We
identify 88 stars, exhibiting a signature consistent with the presence
of a close non-transiting substellar companion. We show that the
objects in our sample are located mostly within the dearth zone,
emphasising the importance of performing follow-up of such systems in
order to gather observational evidence of star-planet interactions.
Description:
Photometric parameters for 88 candidate stars likely to host
non-transiting companions are presented. These stars, primarily
located within the dearth zone of close-in exoplanets, were observed
as part of the Kepler mission. For each star, several parameters are
presented. The results also include photometric fits for the 77
candidates showing quasi-sinusoidal modulations and the 9 candidates
exhibiting complex modulations.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablec1.dat 341 88 Global parameters of the 88 candidates
tableb2.dat 456 9 Photometric fit results for the 9 candidates
showing complex modulations
tableb1.dat 221 77 Photometric fit results for the 77 candidates
showing quasi-sinusoidal modulations
--------------------------------------------------------------------------------
See also:
J/ApJS/244/21 : Surface rotation + activity of Kepler stars. I. (Santos+, 2019)
J/ApJS/255/17 : Surface rotation + activity for Kepler stars. II.
(Santos+, 2021)
J/ApJS/229/30 : Revised stellar properties of Q1-17 Kepler targets
(Mathur+, 2017)
J/AJ/159/280 : Gaia-Kepler stellar properties catalog.I. KIC stars
(Berger+, 2020)
J/AJ/142/112 : KIC photometric calibration (Brown+, 2011)
Byte-by-byte Description of file: tablec1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 I8 --- KIC Kepler Input Catalog (KIC) identifier
10- 18 I9 --- TIC TESS Input Catalog (TIC) identifier
20- 37 F18.16 d Porb Orbital period of the candidate
non-transiting companion
39- 62 E24.16 d e_Porb Lower uncertainty on the orbital period
64- 87 E24.16 d E_Porb Upper uncertainty on the orbital period
89- 93 F5.2 d Prot Stellar rotation period (1)
95- 98 F4.2 d E_Prot Uncertainty on the rotation period (1)
100-119 F20.15 ppm Aperio Periodogram amplitude of the
identified modulation
121-140 F20.16 ppm e_Aperio Lower uncertainty on the amplitude
142-162 F21.16 ppm E_Aperio Upper uncertainty on the amplitude
164-169 F6.1 K Teff Effective temperature (2)
171-176 F6.1 K e_Teff Lower uncertainty on Teff (2)
178-182 F5.1 K E_Teff Upper uncertainty on Teff (2)
184-188 F5.3 Msun Mass Stellar mass (2)
190-195 F6.3 Msun e_Mass Lower uncertainty on stellar mass (2)
197-201 F5.3 Msun E_Mass Upper uncertainty on stellar mass (2)
203-207 F5.3 [cm/s2] logg Surface gravity (2)
209-214 F6.3 [cm/s2] e_logg Lower uncertainty on logg (2)
216-220 F5.3 [cm/s2] E_logg Upper uncertainty on logg (2)
222-227 F6.3 [-] [Fe/H] Metallicity [Fe/H] (2)
229-234 F6.3 [-] e_[Fe/H] Lower uncertainty on [Fe/H] (2)
236-240 F5.3 [-] E_[Fe/H] Upper uncertainty on [Fe/H] (2)
242-247 F6.3 mag Kpmag Kepler magnitude (3)
249-253 F5.3 Rsun Rstar Stellar radius (2)
255-260 F6.3 Rsun e_Rstar Lower uncertainty on radius (2)
262-266 F5.3 Rsun E_Rstar Upper uncertainty on radius (2)
268-285 F18.16 AU amajor Orbital semi-major axis
287-310 E24.16 AU e_amajor Lower uncertainty on semi-major axis
312-335 E24.16 AU E_amajor Upper uncertainty on semi-major axis
337 I1 --- FlagPhP 1 if Porb is a harmonic of Prot
339 I1 --- FlagTide 1 if tidal interaction signs present
341 I1 --- FlagOtherExo 1 if other exoplanet in system
--------------------------------------------------------------------------------
Note (1): Taken from Santos et al. (2019ApJS..244...21S 2019ApJS..244...21S, Cat. J/ApJS/244/21;
2021ApJS..255...17S 2021ApJS..255...17S, Cat. J/ApJS/255/17).
Note (2): Taken from Mathur et al. (2017ApJS..229...30M 2017ApJS..229...30M, Cat. J/ApJS/229/30)
and Berger et al. (2020AJ....159..280B 2020AJ....159..280B, Cat. J/AJ/159/280).
Note (3): Taken from Brown et al. (2011AJ....142..112B 2011AJ....142..112B, Cat. J/AJ/142/112).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 I8 --- KIC Kepler Input Catalog identifier
10- 27 F18.16 d Porb Orbital period of the candidate
29- 49 F21.16 ppm Aatm Theoretical amplitude from
atmospheric processes
51- 68 F18.16 ppm e_Aatm Lower uncertainty on Aatm
70- 87 F18.16 ppm E_Aatm Upper uncertainty on Aatm
89-109 F21.16 ppm Aboost Theoretical amplitude from
Doppler boosting
111-128 F18.16 ppm e_Aboost Lower uncertainty on Aboost
130-147 F18.16 ppm E_Aboost Upper uncertainty on Aboost
149-168 F20.15 ppm Aellip Theoretical amplitude from
ellipsoidal distortion
170-187 F18.16 ppm e_Aellip Lower uncertainty on Aellip
189-206 F18.16 ppm E_Aellip Upper uncertainty on Aellip
208-226 F19.16 d T0 Time of superior conjunction
228-245 F18.16 d e_T0 Lower uncertainty on T0
247-264 F18.16 d E_T0 Upper uncertainty on T0
266-283 F18.16 --- Rp2sinialpha (Rp/Rjup)2xsin(i)xalpharefl proxy
285-302 F18.16 --- e_Rp2sinialpha Lower uncertainty on Rp2 proxy
304-321 F18.16 --- E_Rp2sinialpha Upper uncertainty on Rp2 proxy
323-341 F19.16 --- Mpsini(boost) Minimum mass from boosting,
Mpsini/Mjup
343-360 F18.16 --- e_Mpsini(boost) Lower uncertainty on Mpsini
362-379 F18.16 --- E_Mpsini(boost) Upper uncertainty on Mpsini
381-399 F19.16 --- Mpsini2(ellip) Minimum mass from ellipsoidal,
Mpsini2/Mjup
401-418 F18.16 --- e_Mpsini2(ellip) Lower uncertainty on Mpsini2
420-437 F18.16 --- E_Mpsini2(ellip) Upper uncertainty on Mpsini2
439-456 F18.15 deg IncMax Maximum inclination for non-transit
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 I8 --- KIC Kepler Input Catalog identifier
10- 27 F18.16 d Porb Orbital period of the candidate
29- 49 F21.15 ppm Aatm Theoretical amplitude from
atmospheric processes
51- 68 F18.16 ppm e_Aatm Lower uncertainty on Aatm
70- 87 F18.16 ppm E_Aatm Upper uncertainty on Aatm
89-107 F19.16 d T0 Time of superior conjunction
109-126 F18.16 d e_T0 Lower uncertainty on T0
128-145 F18.16 d E_T0 Upper uncertainty on T0
147-165 F19.16 --- Rp2sinialpha (Rp/Rjup)2xsin(i)xalpharefl proxy
167-184 F18.16 --- e_Rp2sinialpha Lower uncertainty on Rp2 proxy
186-203 F18.16 --- E_Rp2sinialpha Upper uncertainty on Rp2 proxy
205-221 F17.14 deg IncMax ? Maximum inclination for non-transit
--------------------------------------------------------------------------------
Acknowledgements:
Clemence Gourves, clemence.gourves(at)cea.fr
(End) Clemence Gourves [CEA, France], Patricia Vannier [CDS] 28-May-2025