J/A+A/699/A226          Non-transiting exoplanets               (Gourves+, 2025)

Non-transiting exoplanets as a means to understand star-planet interactions in close-in systems. Gourves C., Breton S.N., Dyrek A., Lanza A.F., Garcia R.A., Mathur S., Santos A.R.G., Strugarek A. <Astron. Astrophys. 699, A226 (2025)> =2025A&A...699A.226G 2025A&A...699A.226G (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Exoplanets ; Binaries, orbits ; Effective temperatures ; Stars, masses ; Abundances, [Fe/H] ; Stars, diameters Keywords: methods: data analysis - planets and satellites: detection - planet-star interactions - stars: low-mass - stars: solar-type Abstract: Previous studies showed evidence of a dearth of close-in exoplanets around fast rotators, which can be explained by the combined action of intense tidal and magnetic interactions between planet and their host star. Detecting more exoplanets experiencing such interactions, with orbits evolving on short timescales, is therefore crucial to improve our understanding of the underlying physical mechanisms. For this purpose, we perform a new search for close-in non-transiting substellar companions in the Kepler data, focusing on orbital periods below 2.3 days. We focus on main-sequence solar-type stars and subgiant stars for which a surface rotation period was measured. For each star, we look for an excess in the power spectral density of the light curve, that could correspond to the signature of a close-in non-transiting companion. We compare our candidates with existing catalogues to eliminate potential contaminants in our sample, and we visually inspect the phase-folded light curve and its wavelet decomposition. We identify 88 stars, exhibiting a signature consistent with the presence of a close non-transiting substellar companion. We show that the objects in our sample are located mostly within the dearth zone, emphasising the importance of performing follow-up of such systems in order to gather observational evidence of star-planet interactions. Description: Photometric parameters for 88 candidate stars likely to host non-transiting companions are presented. These stars, primarily located within the dearth zone of close-in exoplanets, were observed as part of the Kepler mission. For each star, several parameters are presented. The results also include photometric fits for the 77 candidates showing quasi-sinusoidal modulations and the 9 candidates exhibiting complex modulations. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablec1.dat 341 88 Global parameters of the 88 candidates tableb2.dat 456 9 Photometric fit results for the 9 candidates showing complex modulations tableb1.dat 221 77 Photometric fit results for the 77 candidates showing quasi-sinusoidal modulations -------------------------------------------------------------------------------- See also: J/ApJS/244/21 : Surface rotation + activity of Kepler stars. I. (Santos+, 2019) J/ApJS/255/17 : Surface rotation + activity for Kepler stars. II. (Santos+, 2021) J/ApJS/229/30 : Revised stellar properties of Q1-17 Kepler targets (Mathur+, 2017) J/AJ/159/280 : Gaia-Kepler stellar properties catalog.I. KIC stars (Berger+, 2020) J/AJ/142/112 : KIC photometric calibration (Brown+, 2011) Byte-by-byte Description of file: tablec1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 I8 --- KIC Kepler Input Catalog (KIC) identifier 10- 18 I9 --- TIC TESS Input Catalog (TIC) identifier 20- 37 F18.16 d Porb Orbital period of the candidate non-transiting companion 39- 62 E24.16 d e_Porb Lower uncertainty on the orbital period 64- 87 E24.16 d E_Porb Upper uncertainty on the orbital period 89- 93 F5.2 d Prot Stellar rotation period (1) 95- 98 F4.2 d E_Prot Uncertainty on the rotation period (1) 100-119 F20.15 ppm Aperio Periodogram amplitude of the identified modulation 121-140 F20.16 ppm e_Aperio Lower uncertainty on the amplitude 142-162 F21.16 ppm E_Aperio Upper uncertainty on the amplitude 164-169 F6.1 K Teff Effective temperature (2) 171-176 F6.1 K e_Teff Lower uncertainty on Teff (2) 178-182 F5.1 K E_Teff Upper uncertainty on Teff (2) 184-188 F5.3 Msun Mass Stellar mass (2) 190-195 F6.3 Msun e_Mass Lower uncertainty on stellar mass (2) 197-201 F5.3 Msun E_Mass Upper uncertainty on stellar mass (2) 203-207 F5.3 [cm/s2] logg Surface gravity (2) 209-214 F6.3 [cm/s2] e_logg Lower uncertainty on logg (2) 216-220 F5.3 [cm/s2] E_logg Upper uncertainty on logg (2) 222-227 F6.3 [-] [Fe/H] Metallicity [Fe/H] (2) 229-234 F6.3 [-] e_[Fe/H] Lower uncertainty on [Fe/H] (2) 236-240 F5.3 [-] E_[Fe/H] Upper uncertainty on [Fe/H] (2) 242-247 F6.3 mag Kpmag Kepler magnitude (3) 249-253 F5.3 Rsun Rstar Stellar radius (2) 255-260 F6.3 Rsun e_Rstar Lower uncertainty on radius (2) 262-266 F5.3 Rsun E_Rstar Upper uncertainty on radius (2) 268-285 F18.16 AU amajor Orbital semi-major axis 287-310 E24.16 AU e_amajor Lower uncertainty on semi-major axis 312-335 E24.16 AU E_amajor Upper uncertainty on semi-major axis 337 I1 --- FlagPhP 1 if Porb is a harmonic of Prot 339 I1 --- FlagTide 1 if tidal interaction signs present 341 I1 --- FlagOtherExo 1 if other exoplanet in system -------------------------------------------------------------------------------- Note (1): Taken from Santos et al. (2019ApJS..244...21S 2019ApJS..244...21S, Cat. J/ApJS/244/21; 2021ApJS..255...17S 2021ApJS..255...17S, Cat. J/ApJS/255/17). Note (2): Taken from Mathur et al. (2017ApJS..229...30M 2017ApJS..229...30M, Cat. J/ApJS/229/30) and Berger et al. (2020AJ....159..280B 2020AJ....159..280B, Cat. J/AJ/159/280). Note (3): Taken from Brown et al. (2011AJ....142..112B 2011AJ....142..112B, Cat. J/AJ/142/112). -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 I8 --- KIC Kepler Input Catalog identifier 10- 27 F18.16 d Porb Orbital period of the candidate 29- 49 F21.16 ppm Aatm Theoretical amplitude from atmospheric processes 51- 68 F18.16 ppm e_Aatm Lower uncertainty on Aatm 70- 87 F18.16 ppm E_Aatm Upper uncertainty on Aatm 89-109 F21.16 ppm Aboost Theoretical amplitude from Doppler boosting 111-128 F18.16 ppm e_Aboost Lower uncertainty on Aboost 130-147 F18.16 ppm E_Aboost Upper uncertainty on Aboost 149-168 F20.15 ppm Aellip Theoretical amplitude from ellipsoidal distortion 170-187 F18.16 ppm e_Aellip Lower uncertainty on Aellip 189-206 F18.16 ppm E_Aellip Upper uncertainty on Aellip 208-226 F19.16 d T0 Time of superior conjunction 228-245 F18.16 d e_T0 Lower uncertainty on T0 247-264 F18.16 d E_T0 Upper uncertainty on T0 266-283 F18.16 --- Rp2sinialpha (Rp/Rjup)2xsin(i)xalpharefl proxy 285-302 F18.16 --- e_Rp2sinialpha Lower uncertainty on Rp2 proxy 304-321 F18.16 --- E_Rp2sinialpha Upper uncertainty on Rp2 proxy 323-341 F19.16 --- Mpsini(boost) Minimum mass from boosting, Mpsini/Mjup 343-360 F18.16 --- e_Mpsini(boost) Lower uncertainty on Mpsini 362-379 F18.16 --- E_Mpsini(boost) Upper uncertainty on Mpsini 381-399 F19.16 --- Mpsini2(ellip) Minimum mass from ellipsoidal, Mpsini2/Mjup 401-418 F18.16 --- e_Mpsini2(ellip) Lower uncertainty on Mpsini2 420-437 F18.16 --- E_Mpsini2(ellip) Upper uncertainty on Mpsini2 439-456 F18.15 deg IncMax Maximum inclination for non-transit -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 I8 --- KIC Kepler Input Catalog identifier 10- 27 F18.16 d Porb Orbital period of the candidate 29- 49 F21.15 ppm Aatm Theoretical amplitude from atmospheric processes 51- 68 F18.16 ppm e_Aatm Lower uncertainty on Aatm 70- 87 F18.16 ppm E_Aatm Upper uncertainty on Aatm 89-107 F19.16 d T0 Time of superior conjunction 109-126 F18.16 d e_T0 Lower uncertainty on T0 128-145 F18.16 d E_T0 Upper uncertainty on T0 147-165 F19.16 --- Rp2sinialpha (Rp/Rjup)2xsin(i)xalpharefl proxy 167-184 F18.16 --- e_Rp2sinialpha Lower uncertainty on Rp2 proxy 186-203 F18.16 --- E_Rp2sinialpha Upper uncertainty on Rp2 proxy 205-221 F17.14 deg IncMax ? Maximum inclination for non-transit -------------------------------------------------------------------------------- Acknowledgements: Clemence Gourves, clemence.gourves(at)cea.fr
(End) Clemence Gourves [CEA, France], Patricia Vannier [CDS] 28-May-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line