J/A+A/700/A195      Stellar parameters for 23 millions of stars  (Turchi+, 2025)

Survey of Surveys. II. Stellar parameters for 23 millions of stars. Turchi A., Pancino E., Avdeeva A., Rossi F., Tsantaki M., Marrese P.M., Marinoni S., Sanna N., Fanari G., Alvarez Garay D., Echeveste M., Nedhath S., Rani S., Reggiani E., Saracino S., Steinbauer L., Thomas G., Gran F., Guiglion G. <Astron. Astrophys. 700, A195 (2025)> =2025A&A...700A.195T 2025A&A...700A.195T (SIMBAD/NED BibCode)
ADC_Keywords: Surveys ; Abundances, [Fe/H]; Photometry; Effective temperatures; Spectroscopy ; Optical Keywords: methods: data analysis - methods: numerical - techniques: spectroscopic - catalogs - surveys - stars: fundamental parameters Abstract: In the current panorama of large surveys, the vast amount of data obtained with different methods, data types, formats, and stellar samples, is making an efficient use of the available information difficult. The Survey of Surveys is a project to critically compile survey results in a single catalogue, facilitating the scientific use of the available information. In this second release, we present two new catalogs of stellar parameters (Teff, logg, and [Fe/H]). To build the first catalog, SoS-Spectro, we calibrated internally and externally stellar parameters from five spectroscopic surveys (APOGEE, GALAH, Gaia-ESO, RAVE, and LAMOST). Our external calibration on the PASTEL database of high-resolution spectroscopy ensures better performances for metal-poor red giants. The second catalog, SoS-ML catalog, is obtained by using SoS-Spectro as a reference to train a multi-layer perceptron, which predicts stellar parameters based on two photometric surveys, SDSS and SkyMapper. As a novel approach, we build on previous parameters sets, from Gaia DR3 and Andrae et al. (2023ApJS..267....8A 2023ApJS..267....8A), aiming to improve their precision and accuracy. We obtain a catalog of stellar parameters for around 23 millions of stars, which we make publicly available. We validate our results with several comparisons with other machine learning catalogs, stellar clusters, and astroseismic samples. We find substantial improvements in the parameters estimates compared to other Machine Learning methods in terms of precision and accuracy, especially in the metal-poor range, as shown in particular when validating our results with globular clusters. Conclusions. We believe that there are two reasons behind our improved results at the low-metallicity end: first, our use of a reference catalog "the SoS-Spectro" which is calibrated using high-resolution spectroscopic data; and second, our choice to build on pre-existing parameter estimates from Gaia and Andrae et al., rather than attempting to obtain our predictions from survey data alone. Description: The catalog contains two major data sources. First the spectroscopic Teff,logg and [Fe/H] for around 4.7 million stars, built using the following spectroscopic surveys: APOGEE DR16 (Ahumadaet al. 2020ApJS..249....3A 2020ApJS..249....3A, Cat. V/154); GALAH DR2 (Buder et al., 2018MNRAS.478.4513B 2018MNRAS.478.4513B, Cat. J/MNRAS/478/4513); Gaia-ESO DR3 (Gilmore et al., 2012Msngr.147...25G 2012Msngr.147...25G); RAVE DR6 (Steinmetz et al. 2020AJ....160...83S 2020AJ....160...83S, Cat. III/283); LAMOST DR5 (Deng et al. 2012RAA....12..735D 2012RAA....12..735D, Cat. V/164/); and GAIA DR2 (Gaia Collaboration 2018, Cat. I/345) . These spectroscopic surveys were homogenized and recalibrated within the SoS-Spectro effort (see Tsantaki et al. 2022A&A...659A..95T 2022A&A...659A..95T, Cat. J/A+A/659/A95, and the paper. SoS-Spectro was already successfully used to characterize Landolt and Stetson secondary standard stars (Pancino et al., 2022A&A...664A.109P 2022A&A...664A.109P, Cat. J/A+A/664/A109), with excellent results even for difficult parameters such as low log g or [Fe/H]. The second data source is the Machine Learning (ML) generated Teff,logg and [Fe/H] for around 19 million stars. This was done from Gaia DR3 photometry and parameters crossmatched with SDSS DR13 (Albareti et al., 2017ApJS..233...25A 2017ApJS..233...25A) and SkyMapper DR2 (Huang et al. 2021ApJ...907...68H 2021ApJ...907...68H) photometry, to predict stellar parameters with SoS-Spectro as a reference. We describe the accuracy of these parameters in the paper. Input metallicities come from Andrae et al. 2023ApJS..267....8A 2023ApJS..267....8A. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file catalog.dat 398 22726234 *SoS DR2 final catalog with cuts PASTEL dr2 newSoSId reorder -------------------------------------------------------------------------------- Note on catalog.dat: References as follows: Tsantaki+22 = Tsantaki et al. (2022A&A...659A..95T 2022A&A...659A..95T) Ahumada+20 = Ahumada et al. (2020ApJS..249....3A 2020ApJS..249....3A) Buder+18 = Buder et al. (2018MNRAS.478.4513B 2018MNRAS.478.4513B) Gilmore+12 = Gilmore et al. (2012Msngr.147...25G 2012Msngr.147...25G) Steinmetz+20 = Steinmetz et al. (2020AJ....160...83S 2020AJ....160...83S) Deng+12 = Deng et al. (2012RAA....12..735D 2012RAA....12..735D) Abazajian+03 = Abazajian et al. (2003AJ....126.2081A 2003AJ....126.2081A) Keller+07 = Keller et al. (2007PASA...24....1K 2007PASA...24....1K) Brown+18 = Brown et al. (2018A&A...616A...1G 2018A&A...616A...1G) Andrae+23 = Andrae et al. (2023ApJS..267....8A 2023ApJS..267....8A) -------------------------------------------------------------------------------- See also: I/345 : Gaia DR2 (Gaia Collaboration, 2018) I/355 : Gaia DR3 Part 1. Main source (Gaia Collaboration, 2022) II/379 : SkyMapper Southern Sky Survey. DR4 (Onken+, 2024) III/283 : RAVE 6th data release (Steinmetz+, 2020) V/154 : Sloan Digital Sky Surveys (SDSS), Release 16 (DR16) (Ahumada+, 2020) V/164 : LAMOST DR5 catalogs (Luo+, 2019) J/MNRAS/478/4513 : GALAH Survey DR2 (Buder+, 2018) J/A+A/664/A109 : Gaia EDR3 and Johnson-Kron-Cousins standards (Pancino+, 2022) Byte-by-byte Description of file: catalog.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 I14 --- SoSID Unique SoS identifier (DR2) 16- 34 I19 --- GaiaDR2 ? Source_id from Gaia DR2, Cat. I/345 36- 54 I19 --- GaiaDR3 Source_id from Gaia DR3, Cat. I/355 56- 74 I19 --- SDSS ? ObjectId from SDSS, , Cat. V/154 76- 84 I9 --- SM ? ObjectId from SkyMapper, Cat. II/379 86-107 E22.20 deg RAdeg Right ascension (ICRS) at Ep=2016.0 from Gaia DR3 109-131 E23.20 deg DEdeg Declinatiop (ICRS) at Ep=2016.0 from Gaia DR3 133-151 F19.13 K specTeff ? SoS-Spectro effective temperature 153-169 F17.12 K e_specTeff ? Error on specTeff 171-189 E19.16 [cm/s2] speclogg ? SoS-Spectro gravity 191-205 E15.13 [cm/s2] e_speclogg ? Error on speclogg 207-229 E23.17 [-] spec[Fe/H] ? SoS-Spectro metallicity 231-245 E15.13 [-] e_spec[Fe/H] ? Error on spec_[Fe/H] 247-264 F18.13 K MLTeff ? Effective temperature from ML 266-284 F19.15 K e_MLTeff ? Error on MLTeff 286-304 F19.16 [cm/s2] MLlogg ? Gravity from ML 306-325 F20.18 [cm/s2] e_MLlogg ? Error on MLlogg 327-349 E23.20 [-] ML[Fe/H] ? Metallicity from ML 351-370 F20.18 [-] e_ML[Fe/H] ? Error on ML[Fe/H] 372-378 A7 --- Source ? ML source catalogue (SDSS, SM, or SDSS+SM) 380-382 F3.1 --- SDSStrainset [0/1]? Star in SDSS training set 384-386 F3.1 --- SMtrainSet [0/1]? Star in SkyMapper training set 388-392 A5 --- SDSStrainarea [False True] Star in SDSS training area 394-398 A5 --- SMtrainarea [False True] Star in SkyMapper training area -------------------------------------------------------------------------------- Acknowledgements: Alessio Turchi, alessio.turchi(at)inaf.it
(End) Patricia Vannier [CDS] 09-Jul-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line