J/A+A/703/L3        Matter power spectrum reconstruction     (Broxterman+, 2025)

Matter power spectrum reconstruction with KiDS-Legacy: Improved internal {LAMBDA}CDM consistency and preference for strong baryonic feedback. Broxterman J.C., Simon P., Porth L., Kuijken K., Wright A.H., Asgari M., Bilicki M., Heymans C., Hildebrandt H., Hoekstra H., Joachimi B., Li S.-S., Maturi M., Moscardini L., Radovich M., Reischke R., Von Wietersheim-Kramsta M. <Astron. Astrophys. 703, L3 (2025)> =2025A&A...703L...3B 2025A&A...703L...3B (SIMBAD/NED BibCode)
ADC_Keywords: Models Keywords: gravitational lensing: weak - large-scale structure of Universe - cosmology: observations Abstract: Direct measurements of the matter power spectrum, Pm (k, z), provide a powerful tool to investigate observed tensions between models of structure growth while also testing the internal consistency of cosmological probes. We analyse cosmic shear data from the final data release of the Kilo- Degree Survey (KiDS), presenting a deprojected Pm (k, z), measured in up to three redshift bins. Compared to analyses using previous KiDS releases, we find improved internal consistency in the z≲0.7 regime. At large scales, k≲0.1h/Mp, our power spectrum reconstruction aligns with {LAMBDA}CDM predictions with a density fluctuation amplitude σ8=0.81. Furthermore, at small scales, k=3-20h/Mpc, the average matter power spectrum is suppressed by 30%±10% (stat.)±4% (sys.) with 2.8σ significance relative to a dark-matter-only model, consistent with expectations of strong baryonic feedback. Description: The data files contain posterior constraints of the matter power spectrum relative to a dark-matter-only power spectrum (Pdmo), averaged for either one wide redshift bin ("nz1") or inside three separate redshift bins ("nz3"). The deprojection technique uses the KiDS-Legacy data of the cosmic shear tomography with six different source redshift bins (Wright et al., 2025, arXiv:2503.19441). The statistical uncertainties take into account uncertainties in the lensing kernel and the adopted model of intrinsic alignments of sources (NLA-M, see Wright et al., 2025, arXiv:2503.19441). The constraints are given for three credible intervals (68%, 95%, and 99%) around the median posterior for 20 different logarithmic k-bins spanning 0.01h/Mpc<k<20h/Mpc. In addition, we provide matrices of the Pearson's correlation between uncertainties of all k- and redshift bins in two separate files. nz1-pm.dat: posterior constraints for one wide redshift bin 0<z<2; more details are given in the file header; the 68%, 95%, and 99% constraints for fdelta are plotted in Fig. 3 of the paper. nz3-pm.dat: posterior constraints for three separate redshift bins 0<z<0.3, 0.3<z<0.6, and 0.6<z<2.0; more details are given in the file header; the 68% constraints for Pm(k,z)=fdelta(k,z)xPdmo(k,z) are plotted in Fig. 1 of the paper, and for fdelta(k,z) only in Fig. 2. nz1-pmcm: correlation matrix for uncertainties in nz1-pm.dat (one redshift bin); more details are given in the file header; the correlation matrix is plotted in Fig. A.1 of the paper. nz3-pmcm: correlation matrix for uncertainties in nz3-pm.dat (three redshift bins); more details are given in the file header. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file nz1-pm.dat 90 20 *Marginalised posterior constraints of the band matter power-spectrum, Pm(k,z), relative to a best-fitting dark-matter-only spectrum, Pdmo(k z), using tomographic shear data from KiDS-Legacy nz1-pmcm.dat 239 20 *Correlations of posterior uncertainties of fdelta(k,z) constraints in the parallel file nz1-pm.dat nz3-pm.dat 91 60 *Marginalised posterior constraints of the band matter power-spectrum, Pm(k,z), relative to a best-fitting dark-matter-only spectrum, Pdmo(k z), using tomographic shear data from KiDS-Legacy nz3-pmcm.dat 719 60 *Correlations of posterior uncertainties of fdelta(k,z) constraints in the parallel file nz3-pm.dat -------------------------------------------------------------------------------- Note on nz1-pm.dat: These data use one average for fdelta(k,z):=Pm(k,z)/Pdmo(k,z) over the entire redshift range 0<z<2 (effectively z≲1). The posterior constraints assume a lensing kernel with Omega matter=0.305±0.012 in a flat universe, and uncertainties in the source redshift distributions and the intrinsic alignment model as described in the paper. The Tikhonov regularised deprojection of Pm(k,z) is described in detail in Simon et al., 2025A&A...698A.217S 2025A&A...698A.217S. Note on nz1-pmcm.dat: The order of k-bands in the in this file corresponds to that in nz1-pm.dat file. Note on nz3-pm.dat: These data averages fdelta(k,z):=Pm(k,z)/Pdmo(k,z) inside the three separate redshift bins Z1=[0,0.3], Z2=[0.3,0.6], and Z3=[0.6,2.0]. The posterior constraints assume a lensing kernel with Omega matter=0.305±0.012 in a flat universe, and uncertainties in the source redshift distributions and the intrinsic alignment model as described in the paper. The Tikhonov regularised deprojection of Pm(k,z) is described in detail in Simon et al., 2025A&A...698A.217S 2025A&A...698A.217S. Note on nz3-pmcm.dat: The order of k-bands in the in this file corresponds to that in nz3-pm.dat file. -------------------------------------------------------------------------------- Byte-by-byte Description of file (#): nz1-pm.dat nz3-pm.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 F10.7 Mpc k k comoving wave number (centre of bin on log-scale), in Mpc/h unit 12- 15 F4.2 --- fiducial redshift of dmo power spectrum in column pdmokz 17- 24 F8.6 --- fdelta Posterior median of fdelta 26- 33 F8.6 --- lCI68fdelta Lower credible interval boundary (68%) of fdelta 35- 42 F8.6 --- uCI68fdelta Upper credible interval boundary (68%) of fdelta 44- 52 F9.7 --- lCI95fdelta Lower credible interval boundary (95%) of fdelta 54- 61 F8.6 --- uCI95fdelta Upper credible interval boundary (95%) of fdelta 62- 71 F10.8 --- lCI99fdelta Lower credible interval boundary (99%) of fdelta 72- 79 F8.6 --- uCI99fdelta Upper credible interval boundary (99%) of fdelta 80- 91 F12.6 Mpc pdmokz dmo power spectrum at , in (Mpc/h)3 unit -------------------------------------------------------------------------------- Byte-by-byte Description of file (#): nz1-pmcm.dat nz3-pmcm.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 E11.5 --- C1 Correlation for K-band 1 in corresponding marginalised posterior constraints file 13- 23 E11.5 --- C2 Correlation for K-band 2 in corresponding marginalised posterior constraints file 25- 35 E11.5 --- C3 Correlation for K-band 3 in corresponding marginalised posterior constraints file 37- 47 E11.5 --- C4 Correlation for K-band 4 in corresponding marginalised posterior constraints file 49- 59 E11.5 --- C5 Correlation for K-band 5 in corresponding marginalised posterior constraints file 61- 71 E11.5 --- C6 Correlation for K-band 6 in corresponding marginalised posterior constraints file 73- 83 E11.5 --- C7 Correlation for K-band 7 in corresponding marginalised posterior constraints file 85- 95 E11.5 --- C8 Correlation for K-band 8 in corresponding marginalised posterior constraints file 97-107 E11.5 --- C9 Correlation for K-band 9 in corresponding marginalised posterior constraints file 109-119 E11.5 --- C10 Correlation for K-band 10 in corresponding marginalised posterior constraints file 121-131 E11.5 --- C11 Correlation for K-band 11 in corresponding marginalised posterior constraints file 133-143 E11.5 --- C12 Correlation for K-band 12 in corresponding marginalised posterior constraints file 145-155 E11.5 --- C13 Correlation for K-band 13 in corresponding marginalised posterior constraints file 157-167 E11.5 --- C14 Correlation for K-band 14 in corresponding marginalised posterior constraints file 169-179 E11.5 --- C15 Correlation for K-band 15 in corresponding marginalised posterior constraints file 181-191 E11.5 --- C16 Correlation for K-band 16 in corresponding marginalised posterior constraints file 193-203 E11.5 --- C17 Correlation for K-band 17 in corresponding marginalised posterior constraints file 205-215 E11.5 --- C18 Correlation for K-band 18 in corresponding marginalised posterior constraints file 217-227 E11.5 --- C19 Correlation for K-band 19 in corresponding marginalised posterior constraints file 229-239 E11.5 --- C20 Correlation for K-band 20 in corresponding marginalised posterior constraints file 241-251 E11.5 --- C21 ? Correlation for K-band 21 in corresponding marginalised posterior constraints file 253-263 E11.5 --- C22 ? Correlation for K-band 22 in corresponding marginalised posterior constraints file 265-275 E11.5 --- C23 ? Correlation for K-band 23 in corresponding marginalised posterior constraints file 277-287 E11.5 --- C24 ? Correlation for K-band 24 in corresponding marginalised posterior constraints file 289-299 E11.5 --- C25 ? Correlation for K-band 25 in corresponding marginalised posterior constraints file 301-311 E11.5 --- C26 ? Correlation for K-band 26 in corresponding marginalised posterior constraints file 313-323 E11.5 --- C27 ? Correlation for K-band 27 in corresponding marginalised posterior constraints file 325-335 E11.5 --- C28 ? Correlation for K-band 28 in corresponding marginalised posterior constraints file 337-347 E11.5 --- C29 ? Correlation for K-band 29 in corresponding marginalised posterior constraints file 349-359 E11.5 --- C30 ? Correlation for K-band 30 in corresponding marginalised posterior constraints file 361-371 E11.5 --- C31 ? Correlation for K-band 31 in corresponding marginalised posterior constraints file 373-383 E11.5 --- C32 ? Correlation for K-band 32 in corresponding marginalised posterior constraints file 385-395 E11.5 --- C33 ? Correlation for K-band 33 in corresponding marginalised posterior constraints file 397-407 E11.5 --- C34 ? Correlation for K-band 34 in corresponding marginalised posterior constraints file 409-419 E11.5 --- C35 ? Correlation for K-band 35 in corresponding marginalised posterior constraints file 421-431 E11.5 --- C36 ? Correlation for K-band 36 in corresponding marginalised posterior constraints file 433-443 E11.5 --- C37 ? Correlation for K-band 37 in corresponding marginalised posterior constraints file 445-455 E11.5 --- C38 ? Correlation for K-band 38 in corresponding marginalised posterior constraints file 457-467 E11.5 --- C39 ? Correlation for K-band 39 in corresponding marginalised posterior constraints file 469-479 E11.5 --- C40 ? Correlation for K-band 40 in corresponding marginalised posterior constraints file 481-491 E11.5 --- C41 ? Correlation for K-band 41 in corresponding marginalised posterior constraints file 493-503 E11.5 --- C42 ? Correlation for K-band 42 in corresponding marginalised posterior constraints file 505-515 E11.5 --- C43 ? Correlation for K-band 43 in corresponding marginalised posterior constraints file 517-527 E11.5 --- C44 ? Correlation for K-band 44 in corresponding marginalised posterior constraints file 529-539 E11.5 --- C45 ? Correlation for K-band 45 in corresponding marginalised posterior constraints file 541-551 E11.5 --- C46 ? Correlation for K-band 46 in corresponding marginalised posterior constraints file 553-563 E11.5 --- C47 ? Correlation for K-band 47 in corresponding marginalised posterior constraints file 565-575 E11.5 --- C48 ? Correlation for K-band 48 in corresponding marginalised posterior constraints file 577-587 E11.5 --- C49 ? Correlation for K-band 49 in corresponding marginalised posterior constraints file 589-599 E11.5 --- C50 ? Correlation for K-band 50 in corresponding marginalised posterior constraints file 601-611 E11.5 --- C51 ? Correlation for K-band 51 in corresponding marginalised posterior constraints file 613-623 E11.5 --- C52 ? Correlation for K-band 52 in corresponding marginalised posterior constraints file 625-635 E11.5 --- C53 ? Correlation for K-band 53 in corresponding marginalised posterior constraints file 637-647 E11.5 --- C54 ? Correlation for K-band 54 in corresponding marginalised posterior constraints file 649-659 E11.5 --- C55 ? Correlation for K-band 55 in corresponding marginalised posterior constraints file 661-671 E11.5 --- C56 ? Correlation for K-band 56 in corresponding marginalised posterior constraints file 673-683 E11.5 --- C57 ? Correlation for K-band 57 in corresponding marginalised posterior constraints file 685-695 E11.5 --- C58 ? Correlation for K-band 58 in corresponding marginalised posterior constraints file 697-707 E11.5 --- C59 ? Correlation for K-band 59 in corresponding marginalised posterior constraints file 709-719 E11.5 --- C60 ? Correlation for K-band 60 in corresponding marginalised posterior constraints file -------------------------------------------------------------------------------- Acknowledgements: Jeger C. Broxterman, broxterman(at)strw.leidenuniv.nl
(End) Patricia Vannier [CDS] 14-Oct-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line