J/A+A/703/L3 Matter power spectrum reconstruction (Broxterman+, 2025)
Matter power spectrum reconstruction with KiDS-Legacy: Improved internal
{LAMBDA}CDM consistency and preference for strong baryonic feedback.
Broxterman J.C., Simon P., Porth L., Kuijken K., Wright A.H., Asgari M.,
Bilicki M., Heymans C., Hildebrandt H., Hoekstra H., Joachimi B., Li S.-S.,
Maturi M., Moscardini L., Radovich M., Reischke R.,
Von Wietersheim-Kramsta M.
<Astron. Astrophys. 703, L3 (2025)>
=2025A&A...703L...3B 2025A&A...703L...3B (SIMBAD/NED BibCode)
ADC_Keywords: Models
Keywords: gravitational lensing: weak - large-scale structure of Universe -
cosmology: observations
Abstract:
Direct measurements of the matter power spectrum, Pm (k, z), provide a
powerful tool to investigate observed tensions between models of
structure growth while also testing the internal consistency of
cosmological probes. We analyse cosmic shear data from the final data
release of the Kilo- Degree Survey (KiDS), presenting a deprojected Pm
(k, z), measured in up to three redshift bins. Compared to analyses
using previous KiDS releases, we find improved internal consistency in
the z≲0.7 regime. At large scales, k≲0.1h/Mp, our power spectrum
reconstruction aligns with {LAMBDA}CDM predictions with a density
fluctuation amplitude σ8=0.81. Furthermore, at small scales,
k=3-20h/Mpc, the average matter power spectrum is suppressed by
30%±10% (stat.)±4% (sys.) with 2.8σ significance relative to
a dark-matter-only model, consistent with expectations of strong
baryonic feedback.
Description:
The data files contain posterior constraints of the matter power
spectrum relative to a dark-matter-only power spectrum (Pdmo),
averaged for either one wide redshift bin ("nz1") or inside three
separate redshift bins ("nz3"). The deprojection technique uses the
KiDS-Legacy data of the cosmic shear tomography with six different
source redshift bins (Wright et al., 2025, arXiv:2503.19441).
The statistical uncertainties take into account uncertainties in the
lensing kernel and the adopted model of intrinsic alignments of
sources (NLA-M, see Wright et al., 2025, arXiv:2503.19441).
The constraints are given for three credible intervals (68%, 95%, and
99%) around the median posterior for 20 different logarithmic k-bins
spanning 0.01h/Mpc<k<20h/Mpc. In addition, we provide matrices of
the Pearson's correlation between uncertainties of all k- and redshift
bins in two separate files.
nz1-pm.dat: posterior constraints for one wide redshift bin 0<z<2;
more details are given in the file header; the 68%, 95%, and 99%
constraints for fdelta are plotted in Fig. 3 of the paper.
nz3-pm.dat: posterior constraints for three separate redshift
bins 0<z<0.3, 0.3<z<0.6, and 0.6<z<2.0; more details are given in the
file header; the 68% constraints for Pm(k,z)=fdelta(k,z)xPdmo(k,z) are
plotted in Fig. 1 of the paper, and for fdelta(k,z) only in Fig. 2.
nz1-pmcm: correlation matrix for uncertainties in nz1-pm.dat (one
redshift bin); more details are given in the file header; the
correlation matrix is plotted in Fig. A.1 of the paper.
nz3-pmcm: correlation matrix for uncertainties in nz3-pm.dat (three
redshift bins); more details are given in the file header.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
nz1-pm.dat 90 20 *Marginalised posterior constraints of the band
matter power-spectrum, Pm(k,z), relative to a
best-fitting dark-matter-only spectrum,
Pdmo(k z), using tomographic shear data
from KiDS-Legacy
nz1-pmcm.dat 239 20 *Correlations of posterior uncertainties of
fdelta(k,z) constraints in the parallel file
nz1-pm.dat
nz3-pm.dat 91 60 *Marginalised posterior constraints of the band
matter power-spectrum, Pm(k,z), relative to a
best-fitting dark-matter-only spectrum,
Pdmo(k z), using tomographic shear data
from KiDS-Legacy
nz3-pmcm.dat 719 60 *Correlations of posterior uncertainties of
fdelta(k,z) constraints in the parallel file
nz3-pm.dat
--------------------------------------------------------------------------------
Note on nz1-pm.dat: These data use one average for
fdelta(k,z):=Pm(k,z)/Pdmo(k,z) over the entire redshift range 0<z<2
(effectively z≲1). The posterior constraints assume a lensing kernel with
Omega matter=0.305±0.012 in a flat universe, and uncertainties in the
source redshift distributions and the intrinsic alignment model as
described in the paper.
The Tikhonov regularised deprojection of Pm(k,z) is described in
detail in Simon et al., 2025A&A...698A.217S 2025A&A...698A.217S.
Note on nz1-pmcm.dat: The order of k-bands in the in this file corresponds to
that in nz1-pm.dat file.
Note on nz3-pm.dat: These data averages fdelta(k,z):=Pm(k,z)/Pdmo(k,z)
inside the three separate redshift bins Z1=[0,0.3], Z2=[0.3,0.6], and
Z3=[0.6,2.0]. The posterior constraints assume a lensing kernel with
Omega matter=0.305±0.012 in a flat universe, and uncertainties in the
source redshift distributions and the intrinsic alignment model as
described in the paper.
The Tikhonov regularised deprojection of Pm(k,z) is described in
detail in Simon et al., 2025A&A...698A.217S 2025A&A...698A.217S.
Note on nz3-pmcm.dat: The order of k-bands in the in this file corresponds to
that in nz3-pm.dat file.
--------------------------------------------------------------------------------
Byte-by-byte Description of file (#): nz1-pm.dat nz3-pm.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 F10.7 Mpc k k comoving wave number (centre of bin on
log-scale), in Mpc/h unit
12- 15 F4.2 --- fiducial redshift of dmo power spectrum
in column pdmokz
17- 24 F8.6 --- fdelta Posterior median of fdelta
26- 33 F8.6 --- lCI68fdelta Lower credible interval boundary (68%)
of fdelta
35- 42 F8.6 --- uCI68fdelta Upper credible interval boundary (68%)
of fdelta
44- 52 F9.7 --- lCI95fdelta Lower credible interval boundary (95%)
of fdelta
54- 61 F8.6 --- uCI95fdelta Upper credible interval boundary (95%)
of fdelta
62- 71 F10.8 --- lCI99fdelta Lower credible interval boundary (99%)
of fdelta
72- 79 F8.6 --- uCI99fdelta Upper credible interval boundary (99%)
of fdelta
80- 91 F12.6 Mpc pdmokz dmo power spectrum at ,
in (Mpc/h)3 unit
--------------------------------------------------------------------------------
Byte-by-byte Description of file (#): nz1-pmcm.dat nz3-pmcm.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 E11.5 --- C1 Correlation for K-band 1 in corresponding
marginalised posterior constraints file
13- 23 E11.5 --- C2 Correlation for K-band 2 in corresponding
marginalised posterior constraints file
25- 35 E11.5 --- C3 Correlation for K-band 3 in corresponding
marginalised posterior constraints file
37- 47 E11.5 --- C4 Correlation for K-band 4 in corresponding
marginalised posterior constraints file
49- 59 E11.5 --- C5 Correlation for K-band 5 in corresponding
marginalised posterior constraints file
61- 71 E11.5 --- C6 Correlation for K-band 6 in corresponding
marginalised posterior constraints file
73- 83 E11.5 --- C7 Correlation for K-band 7 in corresponding
marginalised posterior constraints file
85- 95 E11.5 --- C8 Correlation for K-band 8 in corresponding
marginalised posterior constraints file
97-107 E11.5 --- C9 Correlation for K-band 9 in corresponding
marginalised posterior constraints file
109-119 E11.5 --- C10 Correlation for K-band 10 in corresponding
marginalised posterior constraints file
121-131 E11.5 --- C11 Correlation for K-band 11 in corresponding
marginalised posterior constraints file
133-143 E11.5 --- C12 Correlation for K-band 12 in corresponding
marginalised posterior constraints file
145-155 E11.5 --- C13 Correlation for K-band 13 in corresponding
marginalised posterior constraints file
157-167 E11.5 --- C14 Correlation for K-band 14 in corresponding
marginalised posterior constraints file
169-179 E11.5 --- C15 Correlation for K-band 15 in corresponding
marginalised posterior constraints file
181-191 E11.5 --- C16 Correlation for K-band 16 in corresponding
marginalised posterior constraints file
193-203 E11.5 --- C17 Correlation for K-band 17 in corresponding
marginalised posterior constraints file
205-215 E11.5 --- C18 Correlation for K-band 18 in corresponding
marginalised posterior constraints file
217-227 E11.5 --- C19 Correlation for K-band 19 in corresponding
marginalised posterior constraints file
229-239 E11.5 --- C20 Correlation for K-band 20 in corresponding
marginalised posterior constraints file
241-251 E11.5 --- C21 ? Correlation for K-band 21 in corresponding
marginalised posterior constraints file
253-263 E11.5 --- C22 ? Correlation for K-band 22 in corresponding
marginalised posterior constraints file
265-275 E11.5 --- C23 ? Correlation for K-band 23 in corresponding
marginalised posterior constraints file
277-287 E11.5 --- C24 ? Correlation for K-band 24 in corresponding
marginalised posterior constraints file
289-299 E11.5 --- C25 ? Correlation for K-band 25 in corresponding
marginalised posterior constraints file
301-311 E11.5 --- C26 ? Correlation for K-band 26 in corresponding
marginalised posterior constraints file
313-323 E11.5 --- C27 ? Correlation for K-band 27 in corresponding
marginalised posterior constraints file
325-335 E11.5 --- C28 ? Correlation for K-band 28 in corresponding
marginalised posterior constraints file
337-347 E11.5 --- C29 ? Correlation for K-band 29 in corresponding
marginalised posterior constraints file
349-359 E11.5 --- C30 ? Correlation for K-band 30 in corresponding
marginalised posterior constraints file
361-371 E11.5 --- C31 ? Correlation for K-band 31 in corresponding
marginalised posterior constraints file
373-383 E11.5 --- C32 ? Correlation for K-band 32 in corresponding
marginalised posterior constraints file
385-395 E11.5 --- C33 ? Correlation for K-band 33 in corresponding
marginalised posterior constraints file
397-407 E11.5 --- C34 ? Correlation for K-band 34 in corresponding
marginalised posterior constraints file
409-419 E11.5 --- C35 ? Correlation for K-band 35 in corresponding
marginalised posterior constraints file
421-431 E11.5 --- C36 ? Correlation for K-band 36 in corresponding
marginalised posterior constraints file
433-443 E11.5 --- C37 ? Correlation for K-band 37 in corresponding
marginalised posterior constraints file
445-455 E11.5 --- C38 ? Correlation for K-band 38 in corresponding
marginalised posterior constraints file
457-467 E11.5 --- C39 ? Correlation for K-band 39 in corresponding
marginalised posterior constraints file
469-479 E11.5 --- C40 ? Correlation for K-band 40 in corresponding
marginalised posterior constraints file
481-491 E11.5 --- C41 ? Correlation for K-band 41 in corresponding
marginalised posterior constraints file
493-503 E11.5 --- C42 ? Correlation for K-band 42 in corresponding
marginalised posterior constraints file
505-515 E11.5 --- C43 ? Correlation for K-band 43 in corresponding
marginalised posterior constraints file
517-527 E11.5 --- C44 ? Correlation for K-band 44 in corresponding
marginalised posterior constraints file
529-539 E11.5 --- C45 ? Correlation for K-band 45 in corresponding
marginalised posterior constraints file
541-551 E11.5 --- C46 ? Correlation for K-band 46 in corresponding
marginalised posterior constraints file
553-563 E11.5 --- C47 ? Correlation for K-band 47 in corresponding
marginalised posterior constraints file
565-575 E11.5 --- C48 ? Correlation for K-band 48 in corresponding
marginalised posterior constraints file
577-587 E11.5 --- C49 ? Correlation for K-band 49 in corresponding
marginalised posterior constraints file
589-599 E11.5 --- C50 ? Correlation for K-band 50 in corresponding
marginalised posterior constraints file
601-611 E11.5 --- C51 ? Correlation for K-band 51 in corresponding
marginalised posterior constraints file
613-623 E11.5 --- C52 ? Correlation for K-band 52 in corresponding
marginalised posterior constraints file
625-635 E11.5 --- C53 ? Correlation for K-band 53 in corresponding
marginalised posterior constraints file
637-647 E11.5 --- C54 ? Correlation for K-band 54 in corresponding
marginalised posterior constraints file
649-659 E11.5 --- C55 ? Correlation for K-band 55 in corresponding
marginalised posterior constraints file
661-671 E11.5 --- C56 ? Correlation for K-band 56 in corresponding
marginalised posterior constraints file
673-683 E11.5 --- C57 ? Correlation for K-band 57 in corresponding
marginalised posterior constraints file
685-695 E11.5 --- C58 ? Correlation for K-band 58 in corresponding
marginalised posterior constraints file
697-707 E11.5 --- C59 ? Correlation for K-band 59 in corresponding
marginalised posterior constraints file
709-719 E11.5 --- C60 ? Correlation for K-band 60 in corresponding
marginalised posterior constraints file
--------------------------------------------------------------------------------
Acknowledgements:
Jeger C. Broxterman, broxterman(at)strw.leidenuniv.nl
(End) Patricia Vannier [CDS] 14-Oct-2025