J/A+A/704/A36     Physical parameters of 31 protostellar systems (Murillo, 2025)

The factors that influence protostellar multiplicity. II. Gas temperature and mass in Perseus with APEX. Murillo N.M., Fuchs C.M., Harsono D., Hsieh T.-H., Johnstone D., Mignon-Risse R., Persson M.V., Sakai N. <Astron. Astrophys. 704, A36 (2025)> =2025A&A...704A..36M 2025A&A...704A..36M (SIMBAD/NED BibCode)
ADC_Keywords: YSOs ; Radio sources ; Spectroscopy Keywords: astrochemistry - methods: observational - methods: statistical - stars: formation - stars: low-mass - ISM: molecules Abstract: Protostellar multiplicity is a common outcome of the star formation process. To fully understand the formation and evolution of these systems, the physical parameters of the molecular gas together with the dust must be systematically characterized. Using observations of molecular gas tracers, we characterize the physical properties of cloud cores in the Perseus molecular cloud (average distance of 295pc) at envelope scales (5000-8000AU). We used Atacama Pathfinder EXperiment (APEX) and Nobeyama 45m Radio Observatory (NRO) observations of DCO+, H2CO, and c-C3H2 in several transitions to derive the physical parameters of the gas toward 31 protostellar systems in Perseus. The angular resolutions ranged from 18" to 28.7", equivalent to 5000-8000AU scales at the distance of each subregion in Perseus. The gas kinetic temperature was obtained from DCO+, H2CO, and c-C3H2 line ratios. Column densities and gas masses were then calculated for each species and transition. Gas kinetic temperature and gas masses were compared with bolometric luminosity, envelope dust mass, and multiplicity to search for statistically significant correlations. Gas kinetic temperature was obtained from DCO+, H2CO and c-C3H2 line ratios. Column densities and gas masses were then calculated for each species and transition. Gas kinetic temperature and gas masses were compared with bolometric luminosity, envelope dust mass, and multiplicity to search for statistically significant correlations. Gas kinetic temperature derived from DCO+, H2CO and c-C3H2 line ratios have average values of 14K, 26 and 16K, respectively, with a range of 10-26K for DCO+ and c-C3H2. The gas kinetic temperature obtained from H2CO line ratios have a range of 13-82 K. Column densities of all three molecular species are on the order of 1011 to 1014cm-2, resulting in gas masses of 10-11 to 10-9M. Statistical analysis of the physical parameters finds: i) similar envelope gas and dust masses for single and binary protostellar systems; ii) multiple (>2 components) protostellar systems tend to have slightly higher gas and dust masses than binaries and single protostars; iii) a continuous distribution of gas and dust masses is observed regardless of separation between components in protostellar systems. Description: Sample of protostellar systems in Perseus studied in this work. The sample includes 31 systems distributed in 12 singles, 13 binaries and 6 higher-order multiples, and observed with 46 pointings. The table includes source properties (region, core or system name, components, corresponding Per-emb name, coordinates, separation, distances, clustering), observed quantities (peak line brightness temperature, line width), adopted source parameters (number of components in system, evolutionary stage, bolometric luminosity, envelope dust mass, H2 volumetric density) and derived physical parameters (gas kinetic temperature, column density n(X), and gas mass M(X)). The data included in this table is partially tabulated in Table A.1. of the paper, and plotted in Figures 1, 2, 3 and B.1. Except for gas kinetic temperature, derived parameters are given in log10. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file catalog.dat 1333 46 Source and derived parameters -------------------------------------------------------------------------------- See also: J/ApJ/692/973 : Protostars in Perseus, Serpens and Ophiuchus (Enoch+, 2009) J/ApJ/774/22 : CO observations of YSOs in NGC 1333 (Plunkett+, 2013) J/A+A/620/A30 : 12 embedded protostellar systems APEX spectra (Murillo+, 2018) Byte-by-byte Description of file: catalog.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- Region Subregion in Perseus (Region) 9- 19 A11 --- Core Core name or system name (Core) (1) 21- 35 A15 --- Source Component in the system (Source) 37- 46 A10 --- AName Matching Per-emb designation (AlternateName) (1) 48- 49 I2 h RAh Right ascension (J2000) (R.A.) 51- 52 I2 min RAm Right ascension (J2000) (R.A.) 54- 58 F5.2 s RAs Right ascension (J2000) (R.A.) 59 A1 --- DE- Declination sign (J2000) (Dec.) 60- 61 I2 deg DEd Declination (J2000) (Dec.) 63- 64 I2 arcmin DEm Declination (J2000) (Dec.) 66- 70 F5.2 arcsec DEs Declination (J2000) (Dec.) 72- 77 F6.3 arcsec Sep Separation between components (Separation) 79 A1 --- Clustering [Y/N] Located in Clustering? Y/N (Clustering) (2) 81- 82 I2 --- Class Evolutionary Class (Class) (3) 84 I1 --- NSources Number of sources in pointing (NumberofSources) 86- 88 I3 pc Dist Distance subregion (Distance) (4) 90- 97 F8.4 Lsun Lbol Bolometric luminosity (L_bol) 99- 105 F7.4 Msun MenvSCUBA Envelope dust mass, SCUBA flux (Menv_SCUBA) 107- 113 F7.4 Msun MenvSCUBA2 Envelope dust mass, SCUBA-2 flux (Menv_SCUBA2) 115- 119 F5.3 K FnuN2H-10 N2H+ J=1-0 peak brightness temperature (Fnu_N2H10) 121- 126 F6.4 K e_FnuN2H-10 N2H+ J=1-0 noise (eFnu_N2H10) 128- 132 F5.3 km/s dVN2H-10 N2H+ J=1-0 line width (dV_N2H10) 134- 138 F5.3 K FnuHCO-10 HCO+ J=1-0 peak brightness temperature (Fnu_HCO10) 140- 146 F7.5 K e_FnuHCO-10 HCO+ J=1-0 noise (eFnu_HCO10) 148- 152 F5.3 km/s dVHCO-10 HCO+ J=1-0 line width (dV_HCO10) 154- 158 F5.3 K FnuDCO-10 DCO+ J=1-0 peak brightness temperature (Fnu_DCO10) 160- 165 F6.4 K e_FnuDCO-10 DCO+ J=1-0 noise (eFnu_DCO10) 167- 171 F5.3 km/s dVDCO-10 DCO+ J=1-0 line width (dV_DCO10) 173- 177 F5.3 K FnuDCO-32 DCO+ J=3-2 peak brightness temperature (Fnu_DCO32) 179- 184 F6.4 K e_FnuDCO-32 DCO+ J=3-2 noise (eFnu_DCO32) 186- 190 F5.3 km/s dVDCO-32 DCO+ J=3-2 line width (dV_DCO32) 192- 197 F6.4 K FnuDCO-54 DCO+ J=5-4 peak brightness temperature (Fnu_DCO54) 199- 204 F6.4 K e_FnuDCO-54 DCO+ J=5-4 noise (eFnu_DCO54) 206- 210 F5.3 km/s dVDCO-54 DCO+ J=5-4 line width (dV_DCO54) 212- 216 F5.3 K Fnu_H2CO-32low H2CO 218.22GHz peak brightness temperature (Fnu_H2CO32low) 218- 223 F6.4 K eFnuH2CO-32low H2CO 218.22GHz noise (eFnu_H2CO32low) 225- 229 F5.3 km/s dVH2CO-32low H2CO 218.22GHz line width (dV_H2CO32low) 231- 236 F6.4 K FnuH2CO-32mid H2CO 218.47GHz peak brightness temperature (Fnu_H2CO32mid) 238- 243 F6.4 K e_FnuH2CO-32mid H2CO 218.47GHz noise (eFnu_H2CO32mid) 245- 249 F5.3 km/s dVH2CO-32mid H2CO 218.47GHz line width (dV_H2CO32mid) 251- 256 F6.4 K FnuH2CO-32hi H2CO 218.76GHz peak brightness temperature (Fnu_H2CO32hi) 258- 263 F6.4 K e_FnuH2CO-32hi H2CO 218.76GHz noise (eFnu_H2CO32hi) 265- 269 F5.3 km/s dVH2CO-32hi H2CO 218.76GHz line width (dV_H2CO32hi) 271- 275 F5.3 K FnuH2CO-54 H2CO J=5-4 peak brightness temperature (Fnu_H2CO54) 277- 282 F6.4 K e_FnuH2CO-54 H2CO J=5-4 noise (eFnu_H2CO54) 284- 288 F5.3 km/s dVH2CO-54 H2CO J=5-4 line width (dV_H2CO54) 290- 295 F6.4 K FnuC3H2-32 cC3H2 J=3-2 peak brightness temperature (FnuC3H232) 297- 302 F6.4 K e_FnuC3H2-32 cC3H2 J=3-2 noise (eFnuC3H232) 304- 308 F5.3 km/s dVC3H2-32 cC3H2 J=3-2 line width (dVC3H232) 310- 315 F6.4 K FnuC3H2-65 cC3H2 J=6-5 peak brightness temperature (FnuC3H265) 317- 322 F6.4 K e_FnuC3H2-65 cC3H2 J=6-5 noise (eFnuC3H265) 324- 328 F5.3 km/s dVC3H2-65 cC3H2 J=6-5 line width (dVC3H265) 330- 335 F6.4 K FnuC3H2-54 cC3H2 J=5-4 peak brightness temperature (FnuC3H254) 337- 342 F6.4 K e_FnuC3H2-54 cC3H2 J=5-4 noise (eFnuC3H254) 344- 348 F5.3 km/s dVC3H2-54 cC3H2 J=5-4 line width (dVC3H254) 350- 354 F5.2 K TkinHCN/HNC Gas Tkin from I(HCN)/I(HNC) (TkinHCNHNC) (5) 356- 359 F4.2 K e_TkinHCN/HNC Error Gas Tkin (eTkinHCNHNC) (5) 361- 365 F5.2 K TkinDCO ?=0 Kinematic temperature from DCO+ J=5-4/J=3-2, upper limit if f_TkinDCO=-99 (Tkin_DCO) 367- 371 F5.3 K e_TkinDCO ?=0 Error Tkin from DCO+ (eTkin_DCO) 373- 375 I3 --- f_TkinDCO Flag Tkin from DCO+ (fTkin_DCO) (6) 377- 380 F4.1 K TkinH2CO Kinematic temperature H2CO line peak ratio (Tkin_H2CO) 382- 387 F6.3 K e_TkinH2CO Error Tkin H2CO (eTkin_H2CO) 389- 391 I3 --- f_TkinH2CO Flag Tkin H2CO (6) (fTkin_H2CO) (6) 393- 396 F4.1 K TkinC3H2 ?=0 Kinematic temperature c-C3H2 line peak ratio (Tkin_C3H2) 398- 402 F5.3 K e_TkinC3H2 ?=0 Error Tkin c-C3H2 (eTkin_C3H2) 404- 406 I3 --- f_TkinC3H2 Flag Tkin c-C3H2 (fTkin_C3H2) 408- 423 F16.14 [cm-3] lognH2 H2 volume density, log10 (log10_nH2) 425- 442 F18.15 [cm-3] e_lognH2 [] Error H2 volume density, log10 (log10_enH2) 444- 459 F16.13 [cm-2] lognN2H-10 log10 N2H+ (J=1-0)) volume density (log10NN2H10) 461- 476 F16.13 [cm-2] loge_nN2H-10 Error log(n(N2H+ J=1-0)) (log10eNN2H10) 478- 494 F17.14 [Msun] logMN2H-10 log10 N2H+ (J=1-0) mass (log10Msun_N2H10) 496- 512 F17.14 [Msun] loge_MN2H-10 Error log(M(N2H+ J=1-0)) (log10eMsun_N2H10) 514 I1 --- f_N2H-10 [0] Flag N2H+ J=1-0 (fN2H10) (6) 516- 531 F16.13 [cm-2] lognHCO-10 log10 HCO+ (J=1-0) volume density (log10NHCO10) 533- 549 F17.14 [cm-2] loge_nHCO-10 Error log(n(HCO+ J=1-0)) (log10eNHCO10) 551- 568 F18.14 [Msun] logMHCO-10 log10 HCO+ (J=1-0) mass (log10Msun_HCO10) 570- 586 F17.13 [Msun] loge_MHCO-10 Error log(M(HCO+ J=1-0)) (log10eMsun_HCO10) 588 I1 --- f_HCO-10 [0] Flag HCO+ J=1-0 (fHCO10) (6) 590- 605 F16.13 [cm-2] lognDCO-10 log10 DCO+ (J=1-0) volume density (log10NDCO10) 607- 622 F16.13 [cm-2] loge_nDCO-10 Error log(n(DCO+ J=1-0)) (log10eNDCO10) 624- 641 F18.14 [Msun] logMDCO-10 log10 DCO+ (J=1-0) mass (log10Msun_DCO10) 643- 659 F17.13 [Msun] loge_MDCO-10 Error log(M(DCO+ J=1-0)) (log10eMsun_DCO10) 661- 662 I2 --- f_DCO-10 [-1/0] Flag DCO+ J=1-0 (fDCO10) (6) 664- 679 F16.13 [cm-2] lognDCO-32 log10 DCO+ (J=3-2) volume density (log10NDCO32) 681- 696 F16.13 [cm-2] loge_nDCO-32 Error log(n(DCO+ J=3-2)) (log10eNDCO32) 698- 715 F18.14 [Msun] logMDCO32 log10 DCO+ (J=3-2) mass (log10Msun_DCO32) 717- 734 F18.14 [Msun] loge_MDCO-32 Error log(M(DCO+ J=3-2)) (log10eMsun_DCO32) 736- 737 I2 --- f_DCO-32 [-1/0] Flag DCO+ J=3-2 (fDCO32) (6) 739- 754 F16.13 [cm-2] lognDCO-54 ?=0 log10 DCO+ (J=5-4)) volume density (log10NDCO54) 756- 771 F16.13 [cm-2] loge_nDCO-54 ?=0 Error log(n(DCO+ J=5-4)) (log10eNDCO54) 773- 790 F18.14 [Msun] logMDCO-54 ?=0 log10 DCO+ (J=5-4) mass (log10Msun_DCO54) 792- 809 F18.14 [Msun] loge_MDCO-54 ?=0 Error log(M(DCO+ J=5-4)) (log10eMsun_DCO54) 811- 812 I2 --- f_DCO-54 [-1/0] Flag DCO+ J=5-4 (fDCO54) (6) 814- 829 F16.13 [cm-2] lognH2CO-32l log10 H2CO 218.22GHz volume density (log10NH2CO32l) 831- 846 F16.13 [cm-2] loge_nH2CO-32l Error log(n(H2CO 218.22GHz)) (log10eNH2CO32l) 848- 865 F18.14 [Msun] logMH2CO-32l ?=0 log10 H2CO 218.22GHzmass, upper limit if f_H2CO-32l=-99 (log10Msun_H2CO32l) 867- 884 F18.14 [Msun] loge_MH2CO-32l ?=0 Error log(M(H2CO 218.22GHz)) (log10eMsun_H2CO32l) 886- 888 I3 --- f_H2CO-32l [-99/0] Flag H2CO 218.22GHz (fH2CO32l) (6) 890- 905 F16.13 [cm-2] lognH2CO-32m ?=0 log10 H2CO 218.47GHz volume density (log10NH2CO32m) 907- 922 F16.13 [cm-2] loge_nH2CO-32m ?=0 Error log(n(H2CO 218.47GHz)) (log10eNH2CO32m) 924- 940 F17.14 [Msun] logMH2CO-32m ?=0 log10 H2CO 218.47GHz mass (log10Msun_H2CO32m) 942- 958 F17.14 [Msun] loge_MH2CO-32m ?=0 Error log(M(H2CO 218.47GHz)) (log10eMsun_H2CO32m) 960- 961 I2 --- f_H2CO-32m [-1/0] Flag H2CO 218.47GHz (fH2CO32m) (6) 963- 978 F16.13 [cm-2] lognH2CO-32h ?=0 log10 H2CO 218.76GHz volume density (log10NH2CO32h) 980- 995 F16.13 [cm-2] loge_nH2CO-32h ?=0 Error log(n(H2CO 218.76GHz)) (log10eNH2CO32h) 997- 1013 F17.14 [Msun] logMH2CO-32h ?=0 log10 H2CO 218.76GHz mass (log10Msun_H2CO32h) 1015-1031 F17.14 [Msun] loge_MH2CO-32h ?=0 Error log(M(H2CO 218.76GHz)) (log10eMsun_H2CO32h) 1033-1034 I2 --- f_H2CO-32h [-1/0] Flag H2CO 218.76GHz (fH2CO32h) (6) 1036-1051 F16.13 [cm-2] lognH2CO-54 ?=0 log10 H2CO (J=5-4) volume density (log10NH2CO54) 1053-1068 F16.13 [cm-2] loge_nH2CO-54 ?=0 Error log(n(H2CO J=5-4)) (log10eNH2CO54) 1070-1087 F18.14 [Msun] logMH2CO-54 ?=0 log10 H2CO (J=5-4) mass, upper limit if f_H2CO-54=-99 (log10Msun_H2CO54) 1089-1106 F18.14 [Msun] loge_MH2CO-54 ?=0 Error log(M(H2CO J=5-4)) (log10eMsun_H2CO54) 1108-1110 I3 --- f_H2CO-54 [-99/0] Flag H2CO J=5-4 (fH2CO54) (6) 1112-1127 F16.13 [cm-2] lognC3H2-32 ?=0 log10 cC3H2 (J=3-2) volume density (log10NC3H232) 1129-1145 F17.14 [cm-2] loge_nC3H2-32 ?=0 Error log(n(cC3H2)) (log10eNC3H232) 1147-1163 F17.14 [Msun] logMC3H2-32 ?=0 log10 cC3H2 (J=3-2) mass (log10Msun_C3H232) 1165-1182 F18.14 [Msun] loge_MC3H2-32 ?=0 Error log(M(cC3H2 J=3-2)) (log10eMsun_C3H232) 1184-1185 I2 --- f_C3H2-32 [-1/0] Flag cC3H2 J=3-2 (fC3H2_32) (6) 1187-1202 F16.13 [cm-2] lognC3H2-65 ?=0 log10(n(cC3H2 J=6-5)) (log10NC3H265) 1204-1219 F16.13 [cm-2] loge_nC3H2-65 ?=0 Error log(n(cC3H2)) (log10eNC3H265) 1221-1237 F17.14 [Msun] logMC3H2-65 ?=0 log10 cC3H2 (J=6-5) mass (log10Msun_C3H265) 1239-1256 F18.14 [Msun] loge_MC3H2-65 ?=0 Error log(M(cC3H2 J=6-5)) (log10eMsun_C3H265) 1258-1259 I2 --- f_C3H2-65 [-1/0] Flag cC3H2 J=6-5 (fC3H2_65) (6) 1261-1276 F16.13 [cm-2] lognC3H2-54 ?=0 log10 cC3H2 (J=5-4) volume density (log10NC3H254) 1278-1293 F16.13 [cm-2] loge_nC3H2-54 ?=0 Error log(n(cC3H2 J=5-4)) (log10eNC3H254) 1295-1311 F17.14 [Msun] logMC3H2-54 ?=0 log10 cC3H2 J=5-4) mass (log10Msun_C3H254) 1313-1330 F18.14 [Msun] loge_MC3H2-54 ?=0 Error log(M(cC3H2 J=5-4)) (log10eMsun_C3H254) 1332-1333 I2 --- f_C3H2-54 [-1/0] Flag cC3H2 J=5-4 (fC3H2_54) (6) -------------------------------------------------------------------------------- Note (1): N/A indicates either lack of associated core or Per-emb designation, [EES2009] Per-emb NN in Simbad. Note (2): Clustered regions are defined to have 34 YSO/pc, while non-clustered regions present 6 YSO/pc (Plunkett et al., 2013, Cat. J/ApJ/774/22). Note (3): Adopted from Murillo et al. 2016A&A...592A..56M 2016A&A...592A..56M Note (4): Adopted from Zucker et al. 2018ApJ...869...83Z 2018ApJ...869...83Z Note (5): Adopted from Murillo et al. 2024A&A...689A.267M 2024A&A...689A.267M Note (6): Data flags as follows: 0 = data >3sigma -1 = no detection -99 = upper limit -------------------------------------------------------------------------------- Acknowledgements: Nadia M. Murillo, nmurillo(at)astro.unam.mx
(End) Patricia Vannier [CDS] 22-Oct-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line