J/A+A/706/A280      Molecular gas associated with HII regions      (Khan+, 2026)

Exploring the interplay between molecular and ionized gas in HII regions. Khan S., Jacob A.M., Rugel M.R., Urquhart J.S., Neupane S., Wyrowski F., Brunthaler A., Pandian J.D., Gong Y., Barlach Christensen I., Menten K.M. <Astron. Astrophys. 706, A280 (2026)> =2026A&A...706A.280K 2026A&A...706A.280K (SIMBAD/NED BibCode)
ADC_Keywords: Milky Way ; H II regions ; Radio continuum ; Spectroscopy Keywords: stars: formation - stars: massive - ISM: clouds - ISM: molecules Abstract: Massive stars strongly impact their natal environments and influence subsequent star formation through feedback mechanisms including shocks, outflows and radiation. HII regions are key laboratories for studying this impact. To understand such feedback, it is crucial to characterize the physical conditions of the dense molecular gas in which these regions are embedded. We aim to constrain the kinetic temperature and H2 volume density of massive star-forming clumps associated with HII regions using multiple p-H2CO transitions. The non-LTE analysis yielded kinetic temperatures (Tkin) ranging from 33.7K to 265K and H2 densities (n(H2)) between 0.8x104 to 1.05x107cm-3, providing a detailed characterization of the dense molecular gas contained in these clumps. We observed the JKaKc transitions of p-H2CO (within its J=3-2 and 4-3 states) with the Atacama Pathfinder EXperiment (APEX) 12m submillimeter telescope, using the nFLASH230 and SEPIA345 receivers toward a sample of 61 HII regions. We derived spectral line parameters via multicomponent Gaussian fitting, which was then used to constrain the physical conditions determined using PyRADEX, a non-local thermodynamic equilibrium (LTE) radiative transfer code in combination with Markov chain Monte Carlo analysis. The non-LTE analysis yielded kinetic temperatures (Tkin) ranging from 33.7K to 265K and H2 densities (n(H2)) between 0.8x104 and 1.05x107cm-3, providing a detailed characterization of the dense -olecular gas contained in these clumps. In addition to the p-H2CO emission arising from the targeted clump, a large fraction (57%) of the sources exhibited multiple p-H2CO components, with the secondary components being characterized by a higher Tkin and broader line widths. Investigation of the nature of the secondary component revealed its association with supersonic nonthermal motions and turbulent gas. When comparing the physical properties of the molecular gas and dust components with those of the ionized gas, we found that parameters directly linked to the central high-mass star, such as bolometric luminosity (Lbol) and Lyman continuum photon rate (NLyc), show stronger and more systematic correlations. These findings emphasize the role of the central star in governing the interplay between the molecular and ionized gas. In our sample of HII regions, the pressure of the neutral gas systematically exceeds that of the ionized gas. This suggests that the surrounding neutral molecular medium can hinder or slow down the expansion of HII regions due to its higher pressure. However, given the limited spatial resolution, a definitive conclusion on the role of molecular gas in confining HII regions cannot be made until high resolution observations are obtained. Description: We observed the JKaKc transitions of p-H2CO (within its J=3-2 and 4-3 states) with the Atacama Pathfinder EXperiment (APEX) 12m submillimeter telescope using the nFLASH230 and SEPIA345 receivers towards a sample of 61 HII regions. Spectral line parameters are derived via multi-component Gaussian fitting, which was then used to constrain the physical conditions determined using PyRADEX, a non-local thermodynamic equilibrium (LTE) radiative transfer code in combination with Markov Chain Monte Carlo (MCMC) analysis. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablec1.dat 163 105 Line fitting parameters of the p-H2CO lines observed with nFLASH230 tablec2.dat 162 105 Line fitting parameters of the p-H2CO lines observed with SEPIA345 tablec3.dat 105 105 Derived physical properties of molecular clouds -------------------------------------------------------------------------------- See also: J/A+A/565/A75 : ATLASGAL: dust condensations in Galactic plane (Csengeri+, 2014) J/A+A/611/A6 : ATLASGAL massive clumps H2CO data (Tang+, 2018) J/MNRAS/473/1059 : Complete sample of Galactic clump properties (Urquhart+, 2018) J/A+A/627/A175 : GLOSTAR. Radio Source Catalogue I (Medina+, 2019) J/MNRAS/510/3389 : High-mass star formation evolutionary trends (Urquhart+, 2022) J/A+A/689/A196 : GLOSTAR GPS. Radio source catalog (Medina+, 2024) J/A+A/689/A81 : GLOSTAR GPS. X. Galactic HII region catalog (Khan+, 2024) Byte-by-byte Description of file: tablec1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- GLOSTAR Name of the HII region in the GLOSTAR RRL catalog (G1) 16- 33 A18 --- ATLASGAL Name of the associated ATLASGAL clump 35 A1 --- component [abc] Secondary component name (G2) 37- 40 F4.2 --- etanFLASH Beam filling factor for nFLASH observation 42- 48 F7.2 km/s Vlsr ? Velocity of the component obtained from H2CO(303-202) 50- 54 F5.2 K TmbH2CO1 ? Amplitude of the component of H2CO(303-202) 56- 60 F5.2 K e_TmbH2CO1 ? Error in the amplitude of the component of H2CO(303-202) 62- 67 F6.2 K.km/s tdvH2CO1 ? Integrated intensity of the component of H2CO(303-202) 69- 73 F5.2 K.km/s e_tdvH2CO1 ? Error in the Integrated intensity of the component of H2CO(303-202) 75- 80 F6.2 km/s WH2CO1 ? Linewidth of the component of H2CO(303-202) 82- 86 F5.2 km/s e_WH2CO1 ? Error in the Linewidth of the component of H2CO(303-202) 88- 92 F5.2 K TmbH2CO2 ? Amplitude of the component of H2CO(322-221) 94- 98 F5.2 K e_TmbH2CO2 ? Error in the Amplitude of the component of H2CO(322-221) 100-105 F6.2 K.km/s tdvH2CO2 ? Integrated intensity of the component of H2CO(322-221) 107-111 F5.2 K.km/s e_tdvH2CO2 ? Error in the Integrated intensity of the component of H2CO(322-221) 113-118 F6.2 km/s WH2CO2 ? Linewidth of the component of H2CO(322-221) 120-125 F6.2 km/s e_WH2CO2 ? Error in the Linewidth of the component of H2CO(322-221) 127-131 F5.2 K TmbH2CO3 ? Amplitude of the component of H2CO(321-220) 133-137 F5.2 K e_TmbH2CO3 ? Error in the Amplitude of the component of H2CO(321-220) 139-144 F6.2 K.km/s tdvH2CO3 ? Integrated intensity of the component of H2CO(321-220) 146-150 F5.2 K.km/s e_tdvH2CO3 ? Error in the Integrated intensity of the component of H2CO(321-220) 152-157 F6.2 km/s WH2CO3 ? Linewidth of the component of H2CO(321-220) 159-163 F5.2 km/s e_WH2CO3 ? Error in the Linewidth of the component of H2CO(321-220) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- GLOSTAR Name of the HII region in the GLOSTAR RRL catalog (G1) 16- 33 A18 --- ATLASGAL Name of the associated ATLASGAL clump 35 A1 --- component [abc] Secondary component name (G2) 37- 40 F4.2 --- etaSEPIA Beam filling factor for SEPIA observation 42- 48 F7.2 km/s Vlsr ? Velocity of the component obtained from H2CO(303-202) 50- 54 F5.2 K TmbH2CO4 ? Amplitude of the component of H2CO(404-303) 56- 60 F5.2 K e_TmbH2CO4 ? Error in the Amplitude of the component of H2CO(404-303) 62- 67 F6.2 K.km/s tdvH2CO4 ? Integrated intensity of the component of H2CO(404-303) 69- 73 F5.2 K.km/s e_tdvH2CO4 ? Error in the Integrated intensity of the component of H2CO(404-303) 75- 80 F6.2 km/s WH2CO4 ? Linewidth of the component of H2CO(404-303) 82- 86 F5.2 km/s e_WH2CO4 ? Error in the Linewidth of the component of H2CO(404-303) 88- 92 F5.2 K TmbH2CO5 ? Amplitude of the component of H2CO(423-322) 94- 98 F5.2 K e_TmbH2CO5 ? Error in the Amplitude of the component of H2CO(423-322) 100-105 F6.2 K.km/s tdvH2CO5 ? Integrated intensity of the component of H2CO(423-322) 107-111 F5.2 K.km/s e_tdvH2CO5 ? Error in the Integrated intensity of the component of H2CO(423-322) 113-118 F6.2 km/s WH2CO5 ? Linewidth of the component of H2CO(423-322) 120-124 F5.2 km/s e_WH2CO5 ? Error in the Linewidth of the component of H2CO(423-322) 126-130 F5.2 K TmbH2CO6 ? Amplitude of the component of H2CO(422-321) 132-136 F5.2 K e_TmbH2CO6 ? Error in the Amplitude of the component of H2CO(422-321) 138-143 F6.2 K.km/s tdvH2CO6 ? Integrated intensity of the component of H2CO(422-321) 145-149 F5.2 K.km/s e_tdvH2CO6 ? Error in the Integrated intensity of the component of H2CO(422-321) 151-156 F6.2 km/s WH2CO6 ? Linewidth of the component of H2CO(422-321) 158-162 F5.2 km/s e_WH2CO6 ? Error in the Linewidth of the component of H2CO(422-321) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- GLOSTAR Name of the HII region in the GLOSTAR RRL catalog (G1) 16- 33 A18 --- ATLASGAL Name of the associated ATLASGAL clump 35 A1 --- component Secondary component name (G2) 37- 43 F7.2 K Tkin ? Non-LTE Kinetic temperature 45- 49 F5.2 K E_Tkin ? Upper error in the non-LTE Kinetic temperature 51- 55 F5.2 K e_Tkin ? Lower error in the non-LTE Kinetic temperature 57- 61 F5.2 [cm-3] lognH2 ? Log of H2 density 63- 67 F5.2 [cm-3] E_lognH2 ? Log of upper error in the H2 density 69- 73 F5.2 [cm-3] e_lognH2 ? Log of lower error in the H2 density 75- 80 F6.2 [cm-2] logNH2CO ? Log of para-H2CO column density 82- 86 F5.2 [cm-2] E_logNH2CO ? Log of upper error in the para-H2CO column density 88- 92 F5.2 [cm-2] e_logNH2CO ? Log of lower error in the para-H2CO column density 94- 98 F5.2 --- logXH2CO ? Log of fractional abundance of para-H2CO 100-105 F6.2 [cm-2] logNH2 ? Log of H2 column density -------------------------------------------------------------------------------- Global notes: Note (G1): GLOSTAR RRL catalog, Khan et al., 2024A&A...689A..81K 2024A&A...689A..81K, Cat. J/A+A/689/A81. Note (G2) : a, b, c indicates the secondary velocity components. -------------------------------------------------------------------------------- Acknowledgements: Sarwar Khan, skhan(at)mpifr-bonn.mpg.de
(End) Patricia Vannier [CDS] 29-Dec-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line