J/AJ/151/3            Spectroscopy of binary stars            (Gullikson+, 2016)

Direct spectral detection: an efficient method to detect and characterize binary systems. Gullikson K., Kraus A., Dodson-Robinson S., Jaffe D., Lee J.-E., Mace G.N., MacQueen P., Park S., Riddle A. <Astron. J., 151, 3 (2016)> =2016AJ....151....3G 2016AJ....151....3G (SIMBAD/NED BibCode)
ADC_Keywords: Stars, early-type ; Stars, late-type ; Binaries, spectroscopic; Stars, double and multiple ; Effective temperatures ; Spectral types Keywords: binaries: close; binaries: spectroscopic - stars: early-type - techniques: spectroscopic Abstract: Young, intermediate-mass stars are experiencing renewed interest as targets for direct-imaging planet searches. However, these types of stars are part of multiple systems more often than not. Close stellar companions affect the formation and orbital architecture of planetary systems, and the properties of the companions can help constrain the binary formation mechanism. Unfortunately, close companions are difficult and expensive to detect with imaging techniques. In this paper, we describe the direct spectral detection method wherein a high-resolution spectrum of the primary is cross-correlated against a template for a companion star. Variants of this method have previously been used to search for stellar, brown dwarf, and even planetary companions. We show that the direct spectral detection method can detect companions as late as M-type orbiting A0 or earlier primary stars in a single epoch on small-aperture telescopes. In addition to estimating the detection limits, we determine the sources of uncertainty in characterizing the companion temperature, and find that large systematic biases can exist. After calibrating the systematic biases with synthetic binary star observations, we apply the method to a sample of 34 known binary systems with an A- or B-type primary star. We detect nine total companions, including four of the five known companions with literature temperatures between 4000K<T<6000K, the temperature range for which our method is optimized. We additionally characterize the companion for the first time in two previously single-lined binary systems and one binary identified with speckle interferometry. This method provides an inexpensive way to use small-aperture telescopes to detect binary companions with moderate mass ratios, and is competitive with high-resolution imaging techniques inside ∼100-200mas. Description: We use three separate samples in this work. The first set, given in Table1, contains A- and B-type stars. The second data set (Table2) contains F-M type stars which have a high-quality temperature estimate in the literature. Finally, the third data set (Table3) contains several known binary systems. We estimate the expected companion temperature depending on whether it is part of a spectroscopic (Table4) or visual (Table5) binary system. We use the same set of instruments and settings for all observations throughout the three data sets. We use the CTIO High Resolution (CHIRON) spectrograph on the 1.5m telescope at Cerro Tololo Inter-American Observatory (CTIO) for most southern targets. This spectrograph is an R=λ/Δλ=80000 cross-dispersed echelle spectrograph with wavelength coverage from 450 to 850nm, and is fed by a 2.7'' optical fiber. For the northern targets, we use a combination of the High Resolution Spectrograph (HRS) on the Hobby Eberly Telescope, and the Tull coude (TS23) spectrograph and Immersion Grating INfrared Spectrometer (IGRINS), both on the 2.7m Harlan J. Smith Telescope. All three northern instruments are at McDonald Observatory. For the HRS, we use the R=60000 setting with a 2'' fiber, and with wavelength coverage from 410 to 780nm. For the TS23, we use a 1.2'' slit in combination with the E2 echelle grating (53grooves/mm, blaze angle 65°), yielding a resolving power of R=60000 and a wavelength coverage from 375 to 1020nm. IGRINS only has one setting with R=40000. It has complete wavelength coverage from 1475 to 2480nm, except for where telluric absorption is almost 100% from 1810 to 1930nm. We list our temperature measurements as well as the expected temperatures in Table6. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 77 183 Early type calibration stars table2.dat 82 83 Late type calibration stars table3.dat 77 40 Known binary stars table4.dat 33 19 Literature spectroscopic data table5.dat 33 16 Literature imaging data table6.dat 52 18 Companion data -------------------------------------------------------------------------------- See also: B/wds : The Washington Visual Double Star Catalog (Mason+ 2001-2014) B/sb9 : 9th Catalogue of Spectroscopic Binary Orbits (Pourbaix+ 2004-2014) I/239 : The Hipparcos and Tycho Catalogues (ESA 1997) J/ApJ/804/64 : Empirical and model parameters of 183 M dwarfs (Mann+, 2015) J/ApJS/208/9 : Intrinsic colors & temperatures of PMS stars (Pecaut+, 2013) J/ApJ/757/112 : Stellar diameters. II. K and M-stars (Boyajian+, 2012) J/A+A/530/A138 : Geneva-Copenhagen survey re-analysis (Casagrande+, 2011) J/A+A/547/A106 : Li abundances in the FGK dwarfs (Mishenina+, 2012) J/A+A/512/A54 : Teff and Fbol from Infrared Flux Method (Casagrande+, 2010) J/MNRAS/389/585 : Fundamental parameters of M dwarfs (Casagrande+, 2008) J/A+A/487/373 : Spectroscopic paramet. of 451 HARPS-GTO stars (Sousa+, 2008) J/ApJ/626/446 : Effective temperature scale of FGK stars (Ramirez+, 2005) J/ApJS/159/141 : Spectroscopic properties of cool stars. I. (Valenti+, 2005) J/AJ/130/767 : Radial velocities of close binary stars (Rucinski+, 2005) J/A+AS/117/227 : Dwarf effective temperatures (Alonso+ 1996) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Name Star name 13- 14 I2 h RAh Hour of Right Ascension (J2000) 16- 17 I2 min RAm Minute of Right Ascension (J2000) 19- 22 F4.1 s RAs Second of Right Ascension (J2000) 24 A1 --- DE- Sign of the Declination (J2000) 25- 26 I2 deg DEd Degree of Declination (J2000) 28- 29 I2 arcmin DEm Arcminute of Declination (J2000) 31- 34 F4.1 arcsec DEs Arcsecond of Declination (J2000) 36- 41 A6 --- SpT Spectral type from SIMBAD database 43- 46 F4.2 mag Vmag [2.9/6] V-band magnitude 48- 51 F4.2 mag Kmag [2.6/6.4]? K-band magnitude 53- 58 A6 --- Inst Instrument (CHIRON, HRS, IGRINS, or TS23) (G1) 60- 70 A11 "Y:M:D" Date Date of observation 72- 77 F6.2 min Exp [3.7/200] Exposure time -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Star name 12- 13 I2 h RAh Hour of Right Ascension (J2000) 15- 16 I2 min RAm Minute of Right Ascension (J2000) 18- 21 F4.1 s RAs Second of Right Ascension (J2000) 23 A1 --- DE- Sign of the Declination (J2000) 24- 25 I2 deg DEd Degree of Declination (J2000) 27- 28 I2 arcmin DEm Arcminute of Declination (J2000) 30- 33 F4.1 arcsec DEs Arcsecond of Declination (J2000) 35- 39 F5.2 mag Vmag [0.3/11.3] V-band magnitude 41- 45 F5.2 mag Kmag [-0.65/7.1] K-band magnitude 47- 50 I4 K Teff [3218/6912] Effective temperature 52- 54 I3 K e_Teff [7/168] Error in Teff 56- 57 I2 --- r_Teff [1/15] Reference for Teff (1) 59- 64 A6 --- Inst Instrument (CHIRON, HRS, IGRINS, or TS23) (G1) 66- 76 A11 "Y:M:D" Date Date of observation 78- 82 F5.2 min Exp [0.03/65] Exposure time -------------------------------------------------------------------------------- Note (1): The temperatures come from the following sources: 1 = Woolf & Wallerstein 2005MNRAS.356..963W 2005MNRAS.356..963W; 2 = Sousa et al. 2008 (Cat. J/A+A/487/373); 3 = Boyajian et al. 2013ApJ...771...40B 2013ApJ...771...40B; 4 = Alonso et al. 1996 (Cat. J/A+AS/117/227); 5 = Valenti & Fischer 2005 (Cat. J/ApJS/159/141); 6 = Neves et al. 2014A&A...568A.121N 2014A&A...568A.121N; 7 = Mann et al. 2015 (Cat. J/ApJ/804/64); 8 = Casagrande et al. 2011 (Cat. J/A+A/530/A138); 9 = Ramirez and Melendez 2005 (Cat. J/ApJ/626/446); 10 = Casagrande et al. 2008 (Cat. J/MNRAS/389/585); 11 = Mishenina et al. 2012 (Cat. J/A+A/547/A106); 12 = Casagrande et al. 2010 (Cat. J/A+A/512/A54); 13 = Boyajian et al. 2012 (Cat. J/ApJ/757/112); 14 = Pecaut & Mamajek 2013 (Cat. J/ApJS/208/9); 15 = Zboril & Byrne 1998MNRAS.299..753Z 1998MNRAS.299..753Z. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- --- [HIP] 5- 10 I6 --- HIP [1366/116611] HIP number 12- 13 I2 h RAh Hour of Right Ascension (J2000) 15- 16 I2 min RAm Minute of Right Ascension (J2000) 18- 22 F5.2 s RAs Second of Right Ascension (J2000) 24 A1 --- DE- Sign of the Declination (J2000) 25- 26 I2 deg DEd Degree of Declination (J2000) 28- 29 I2 arcmin DEm Arcminute of Declination (J2000) 31- 35 F5.2 arcsec DEs Arcsecond of Declination (J2000) 37- 41 A5 --- SpT Spectral type from SIMBAD database 43- 46 F4.2 mag Vmag [2.2/6] V-band magnitude 48- 51 F4.2 mag Kmag [2.2/6.3]? K-band magnitude 53- 58 A6 --- Inst Instrument (CHIRON, HRS, IGRINS, or TS23) (G1) 60- 70 A11 "Y:M:D" Date Date of observation 72- 77 F6.2 min Exp [3.73/140] Exposure time -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- --- [HIP] 5- 10 I6 --- HIP [3300/116611] HIP number (1) 12- 13 I2 --- Ref [3/18] Reference for orbital data (2) 15- 19 F5.2 km/s K1 [6/49.7] Orbital amplitude of the primary 21- 25 F5.2 km/s K2 [99]? Orbital amplitude of the secondary 27- 33 F7.2 d Per [0.5/8016] Period -------------------------------------------------------------------------------- Note (1): Known binary stars with spectroscopic orbit solutions. Note (2): The orbital data is from SB9 database (Pourbaix et al. 2004, Cat. B/sb9), and the original references are defined as follows: 1 = Hill et al. 1971ApJ...168..443H 1971ApJ...168..443H; 2 = Lloyd 1981MNRAS.195..805L 1981MNRAS.195..805L; 3 = Rucinski et al. 2005 (Cat. J/AJ/130/767); 4 = Abt & Levy 1978ApJS...36..241A 1978ApJS...36..241A; 5 = Pourbaix et al. 2004 (Cat. B/sb9); 6 = Morrell & Abt 1992ApJ...393..666M 1992ApJ...393..666M; 7 = Abt et al. 1990ApJS...74..551A 1990ApJS...74..551A; 8 = Fekel & Tomkin 1982ApJ...263..289F 1982ApJ...263..289F; 9 = Lucy & Sweeney 1971AJ.....76..544L 1971AJ.....76..544L; 10 = Pogo 1928ApJ....68..309P 1928ApJ....68..309P; 11 = Duerbeck 1975A&AS...22...19D 1975A&AS...22...19D; 12 = Abt 1965ApJS...11..429A 1965ApJS...11..429A; 13 = Scarfe et al. 2000AJ....119.2415S 2000AJ....119.2415S; 14 = Tomkin & Popper 1986AJ.....91.1428T 1986AJ.....91.1428T; 15 = Levato et al. 1987ApJS...64..487L 1987ApJS...64..487L; 16 = Richardson & McKellar 1957PDAO...10..407R 1957PDAO...10..407R; 17 = Leone & Catanzaro 1999A&A...343..273L 1999A&A...343..273L; 18 = Hube 1973JRASC..67..161H 1973JRASC..67..161H; 19 = Pearce 1936PASP...48..214P 1936PASP...48..214P. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- --- [HIP] 5- 10 I6 --- HIP [1366/116611] HIP number (1) 12- 13 I2 --- Ref [1/12] Reference (2) 15- 18 F4.2 arcsec Sep [0.04/1.2] Separation 20- 23 F4.2 mag dmag [0.5/6]? Δ magnitude (Δm) 25- 28 F4.2 mag e_dmag [0/0.15]? Error in dmag 30- 33 I4 nm lambda [511/4770] Wavelength λ -------------------------------------------------------------------------------- Note (1): Known binary stars detected through either high-contrast imaging or interferometry. Note (2): The imaging data comes from the Washington Double Star Catalog (Mason et al. 2014, Cat. B/wds), and the most recent measurements are given as follows: 1 = McAlister et al. 1989AJ.....97..510M 1989AJ.....97..510M; 2 = Roberts et al. 2007AJ....133..545R 2007AJ....133..545R; 3 = ESA 1997 (Cat. I/239); 4 = Mamajek et al. 2010 (Cat. 2010AJ....139..919M 2010AJ....139..919M); 5 = Drummond 2014AJ....147...65D 2014AJ....147...65D; 6 = Shatsky & Tokovinin 2002 (Cat. J/A+A/382/92); 7 = Tokovinin et al. 2010 (Cat. J/AJ/139/743); 8 = McAlister et al. 1987AJ.....93..183M 1987AJ.....93..183M; 9 = Horch et al. 2010 (Cat. J/AJ/139/205); 10 = Horch et al. 2008 (Cat. J/AJ/136/312); 11 = Horch et al. 2001AJ....121.1583H 2001AJ....121.1583H; 12 = De Rosa et al. 2012 (Cat. J/MNRAS/422/2765). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- --- [HIP] 5- 10 I6 --- HIP [13165/116611] HIP number 12- 15 I4 K Teff1 [4620/6820]? Measured effective temperature 17- 19 I3 K e_Teff1 [112/162]? Uncertainty in Teff 21- 24 F4.1 [Sun] [Fe/H]1 [-0.5/0.5]? Measured metallicity 26- 27 I2 km/s vsini1 [5/30]? Measured rotational velocity 29- 32 I4 K Teff2 [3842/7366]? Expected effective temperature 34- 37 I4 K e_Teff2 [-550/-11]? Negative uncertainty in Teff2 39- 42 I4 K E_Teff2 [34/579]? Positive uncertainty in Teff2 44- 45 I2 km/s vsini2 [2/13]? Expected rotational velocity (1) 47- 48 I2 km/s e_vsini2 [-9/-1]? Negative uncertainty in vsini2 50- 52 I3 km/s E_vsini2 [3/18]? Positive uncertainty in vsini2 -------------------------------------------------------------------------------- Note (1): The expected vsini values come from application of Eq.(6) as described in Sect.5 -------------------------------------------------------------------------------- Global Notes: Note (G1): The codes for the instruments are defined as below: CHIRON = CTIO High Resolution (CHIRON) spectrograph on the 1.5m telescope at Cerro Tololo Inter-American Observatory (CTIO); HRS = High Resolution Spectrograph (HRS) on the Hobby Eberly Telescope; IGRINS = Immersion Grating INfrared Spectrometer (IGRINS) on the 2.7m Harlan J. Smith telescope; TS23 = Tull coude spectrograph on the 2.7m Harlan J. Smith telescope. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Sylvain Guehenneux [CDS] 29-Sep-2016
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line