J/AJ/156/149 Properties of massive giant planets & brown dwarfs (Becker+, 2018)
Material properties for the interiors of massive giant planets and brown dwarfs.
Becker A., Bethkenhagen M., Kellermann C., Wicht J., Redmer R.
<Astron. J., 156, 149 (2018)>
=2018AJ....156..149B 2018AJ....156..149B (SIMBAD/NED BibCode)
ADC_Keywords: Exoplanets ; Stars, brown dwarf ; Abundances, [Fe/H] ;
Magnetic fields ; Models
Keywords: brown dwarfs - conduction - dense matter - equation of state -
planets and satellites: interiors -
planets and satellites: magnetic fields
Abstract:
We present thermodynamic material and transport properties for the extreme
conditions prevalent in the interiors of massive giant planets and
brown dwarfs. They are obtained from extensive ab initio simulations
of hydrogen-helium mixtures along the isentropes of three representative
objects. In particular, we determine the heat capacities, the thermal
expansion coefficient, the isothermal compressibility, and the sound
velocity. Important transport properties such as the electrical and
thermal conductivity, opacity, and shear viscosity are also calculated.
Further results for associated quantities, including magnetic and thermal
diffusivity, kinematic shear viscosity, as well as the static Love number
k2 and the equidistance, are presented. In comparison to Jupiter-mass
planets, the behavior inside massive giant planets and brown dwarfs is
stronger dominated by degenerate matter. We discuss the implications
on possible dynamics and magnetic fields of those massive objects. The
consistent data set compiled here may serve as a starting point to obtain
material and transport properties for other substellar H-He objects with
masses above one Jovian mass and finally may be used as input for dynamo
simulations.
Description:
The work presented here extends the Jupiter study of French et al.
(2012ApJS..202....5F 2012ApJS..202....5F). We select three objects within a mass range of
10-50 MJ from Becker et al. (2014, J/ApJS/215/21): the massive exoplanet
KOI-889b, and the two brown dwarfs Corot-3b and Gliese-229b. The interior
structure models of the massive giant planet KOI-889b and the brown
dwarfs Corot-3b and Gliese-229b are adopted from Becker et al. (2014,
J/ApJS/215/21). All these values lie within the error bars of the
corresponding observational constraints as listed in Table 1. The
isentropes of the three objects considered here are illustrated in
Figure 1, while the thermodynamic states for selected points along the
isentropes can be found in Table 2. In contrast to the thermodynamic
properties, the transport properties such as the shear viscosity η
and the electrical and thermal conductivities σ and λ are
obtained from simulating a real H-He mixture. The entire sets of transport
properties along the three isentropes can be found in Table 4.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 106 3 Observational constraints and parameters
table2.dat 107 36 Thermodynamic material properties of the massive
giant planet KOI-889b as well as the brown
dwarfs Corot-3b and Gliese-229b
table4.dat 108 36 Linear transport properties of the massive giant
planet KOI-889b as well as the brown dwarfs
Corot-3b and Gliese-229b
--------------------------------------------------------------------------------
See also:
J/A+A/491/889 : CoRoT-Exo-3b observations (Deleuil+, 2008)
J/ApJ/764/18 : Characteristic frequencies of giant exoplanets
(Le Bihan+, 2013)
J/ApJS/215/21 : Hydrogen and Helium EOS in brown dwarfs (Becker+, 2014)
J/A+A/615/A39 : Exoplanets interior structures & Love numbers
(Kellermann+, 2018)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- Name Name of object
13- 14 I2 h RAh Simbad Hour of Right Ascension (J2000)
16- 17 I2 min RAm Simbad Minute of Right Ascension (J2000)
19- 23 F5.2 s RAs Simbad Second of Right Ascension (J2000)
25 A1 --- DE- Simbad Sign of the Declination (J2000)
26- 27 I2 deg DEd Simbad Degree of Declination (J2000)
29- 30 I2 arcmin DEm Simbad Arcminute of Declination (J2000)
32- 35 F4.1 arcsec DEs Simbad Arcsecond of Declination (J2000)
37- 41 F5.2 Mjup Mass [9.98/46.2] Mass
43- 46 F4.1 Mjup E_Mass [0.5/11.8] Upper limit uncertainty in Mass
48- 51 F4.1 Mjup e_Mass [0.5/14.8] Lower limit uncertainty in Mass
52 A1 --- r_Mass [acd] Reference for Mass (1)
54- 57 F4.2 Rjup Rad [0.87/1.03] Radius
59- 62 F4.2 Rjup E_Rad [0.06/0.11] Upper limit uncertainty in Rad
64- 67 F4.2 Rjup e_Rad [0.06/0.07] Lower limit uncertainty in Rad
68 A1 --- r_Rad [acd] Reference for Rad (1)
70- 74 F5.2 [-] [Fe/H] [-0.2/-0.02] Metallicity
76- 79 F4.2 [-] e_[Fe/H] [0.06/0.4] Uncertainty in [Fe/H]
80 A1 --- r_[Fe/H] [ace] Reference for [Fe/H] (1)
82- 83 I2 bar Patm [52/74] Atmospheric pressure
84 A1 --- r_Patm [b] Reference for Patm (2)
86- 89 I4 K Tatm [1000/1800] Atmospheric temperature
90 A1 --- r_Tatm [b] Reference for Tatm (2)
92- 95 F4.2 --- X [0.69/0.71] Hydrogen mass fraction
97-100 F4.2 --- Y [0.27/0.27] Helium mass fraction
102-105 F4.2 --- Z [0.02/0.04] Heavy elements mass fraction
106 A1 --- r_XYZ [b] Reference for XYZ (2)
--------------------------------------------------------------------------------
Note (1): Reference as follows:
a = Hebrard et al. (2013A&A...554A.114H 2013A&A...554A.114H);
c = Deleuil et al. (2008, J/A+A/491/889);
d = Mass and radius are derived from the fitting formulae given in
Marley et al. (1996Sci...272.1919M 1996Sci...272.1919M);
e = Schiavon et al. (1997ApJ...484..499S 1997ApJ...484..499S).
Note (2): Reference as follows:
b = Becker et al. (2014, J/ApJS/215/21), atmosphere model by Marley et al.
(1996Sci...272.1919M 1996Sci...272.1919M) and Fortney et al. (2008ApJ...683.1104F 2008ApJ...683.1104F).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- Name Name of object
13- 21 E9.3 --- r [0.00929/0.998] Radius coordinate within object
(in relative units)
23- 32 E10.4 --- m [3.08e-05/1] Mass coordinate within object
(in relative units)
34- 42 E9.3 GPa P [2.53/22140000] Pressure
44- 51 E8.2 K T [4800/1180000] Temperature
53- 61 E9.3 g/cm3 rho [0.1/447] Density ρ
63- 70 E8.2 K-1 alpha [1.26e-07/0.000133] Thermal expansion coefficient
α
72- 79 E8.2 GPa-1 kappaT [2.93e-08/0.288] Isothermal compressibility
κT
81- 88 E8.2 J/g/K cV [10.8/19.5] Specific heat capacity at constant
volume
90- 97 E8.2 J/g/K cP [13/24.2] Specific heat capacity at constant
pressure
99-107 E9.3 km/s cS [6.48/289] Sound velocity
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- Name Name of object
13- 21 E9.3 --- r [0.00929/0.998] Radius coordinate within object
(in relative units)
23- 32 E10.4 --- m [3.07e-05/1] Mass coordinate within object
(in relative units)
34- 41 E8.2 K T [4800/1180000] Temperature
43- 50 E8.2 S/m sigma [33.7/232000000] Electrical conductivity σ
52- 60 E9.3 m+2/s beta [0.00342/23600] Magnetic diffusivity β
62- 70 E9.3 W/K/m lambda [0.022/6420000] Thermal conductivity λ
72- 79 E8.2 m+2/s kappa [1.32e-08/0.000883] Thermal diffusivity κ
81- 89 E9.3 mPa/s eta [0.078/581] Dynamic shear viscosity η
91- 99 E9.3 mm2/s nu [0.474/1.3] Kinematic shear viscosity ν
101-108 E8.2 cm2/g kappaR [3000/1590000] Rosseland mean opacity κR
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Tiphaine Pouvreau [CDS] 15-Mar-2019