J/AJ/156/295       Warm molecular hydrogen in nearby LIRGs       (Petric+, 2018)

Warm molecular hydrogen in nearby, Luminous Infrared Galaxies. Petric A.O., Armus L., Flagey N., Guillard P., Howell J., Inami H., Charmandaris V., Evans A., Stierwalt S., Diaz-Santos T., Lu N., Spoon H., Mazzarella J., Appleton P., Chan B., Chu J., Hand D., Privon G., Sanders D., Surace J., Xu K., Zhao Y. <Astron. J., 156, 295 (2018)> =2018AJ....156..295P 2018AJ....156..295P (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, nearby ; Galaxies, IR ; Atomic physics ; Spectra, infrared Keywords: galaxies: active - galaxies: interactions - galaxies: ISM - galaxies: starburst Abstract: Mid-infrared molecular hydrogen (H2) emission is a powerful cooling agent in galaxy mergers and in radio galaxies; it is a potential key tracer of gas evolution and energy dissipation associated with mergers, star formation, and accretion onto supermassive black holes. We detect mid-IR H2 line emission in at least one rotational transition in 91% of the 214 Luminous Infrared Galaxies (LIRGs) observed with Spitzer as part of the Great Observatories All-sky LIRG Survey. We use H2 excitation diagrams to estimate the range of masses and temperatures of warm molecular gas in these galaxies. We find that LIRGs in which the IR emission originates mostly from the Active Galactic Nuclei (AGN) have about 100 K higher H2 mass-averaged excitation temperatures than LIRGs in which the IR emission originates mostly from star formation. Between 10% and 15% of LIRGs have H2 emission lines that are sufficiently broad to be resolved or partially resolved by the high-resolution modules of Spitzer's Infrared Spectrograph (IRS). Those sources tend to be mergers and contain AGN. This suggests that a significant fraction of the H2 line emission is powered by AGN activity through X-rays, cosmic rays, and turbulence. We find a statistically significant correlation between the kinetic energy in the H2 gas and the H2 to IR luminosity ratio. The sources with the largest warm gas kinetic energies are mergers. We speculate that mergers increase the production of bulk inflows leading to observable broad H2 profiles and possibly denser gas. Description: The GOALS sample properties and selection are described in detail in Armus et al. (2009PASP..121..559A 2009PASP..121..559A). For this investigation, we use the spectra of 248 individual nuclei in 202 LIRG systems, observed in the high-resolution Infrared Spectrograph (IRS) modules (Short-High and Long-High; abbreviated SH and LH) and complementary low-resolution (IRS Short-Low and Long-Low; abbreviated SL and LL) spectra for 234 sources. The widths of the SL, SH, LL, LH slits (3.6", 4.7", 10.7", 11.1") correspond to 1.5, 2.0, 4.5, and 4.6 kpc, respectively, at a distance of 88 Mpc - the median galaxy distance in our sample. The distances to the GOALS galaxies are between 17.5 and 387 Mpc. We obtained the IRS spectra in our own observing program (PI: Armus, PID 30323) for 158 LIRG systems, with the IRS spectra for the remaining 44 LIRG systems taken from the Spitzer archive. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 31 8 *H2 rotational transitions table2.dat 76 231 H2 fluxes table4.dat 34 27 General properties of galaxies where the H2 S(1) is resolved or marginally resolved table5.dat 73 214 Masses and temperatures of warm molecular gas as estimated from MIR spectroscopy -------------------------------------------------------------------------------- Note on table1.dat: Roussel et al. (2007, J/ApJ/669/959). -------------------------------------------------------------------------------- See also: J/A+A/434/149 : NIR spectroscopy of luminous IR galaxies (Valdes+, 2005) J/A+A/451/57 : Luminous IR galaxies mid-infrared properties (Marcillac+, 2006) J/ApJ/669/959 : Warm molecular hydrogen in SINGS galaxy sample (Roussel+, 2007) J/MNRAS/395/1695 : Spitzer mid-IR spectroscopy of LIRGs (Hernan-Caballero+, 2009) J/ApJ/709/884 : Role of starburst-AGN composites in LIRG mergers (Yuan+, 2010) J/ApJ/723/993 : Spatial extent of (U)LIRGs in the MIR. I. (Diaz-Santos+, 2010) J/ApJ/741/32 : Spatial extent of (U)LIRGs in the MIR. II. (Diaz-Santos+, 2011) J/ApJ/777/156 : Spitzer/IRS spectra of GOALS luminous IR galaxies (Inami+, 2013) J/ApJS/206/1 : Mid-IR properties of GOALS nearby LIRGs (Stierwalt+, 2013) J/ApJ/790/124 : Dust and gas physics of the GOALS sample (Stierwalt+, 2014) J/ApJ/846/32 : Herschel FIR spectra of GOALS galaxies (Diaz-Santos+, 2017) J/A+A/617/A130 : Luminous infrared galaxies AKARI 2.5-5um data (Inami+, 2018) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- Trans Short notation of H2 transition 6 I1 --- J0 [2/9] Upper J quantum number (1) 8 I1 --- J1 [0/7] Lower J quantum number (1) 10- 15 F6.3 um lambda [5.511/28.219] Transition rest wavelength 17- 20 I4 K Eu/k [510/7197] Rotational upper energy (2) 22- 28 F7.5 10-7/s A [0.00029/2] Transition probability from Black & Dalgarno 1976ApJ...203..132B 1976ApJ...203..132B; Roussel et al. 2007, J/ApJ/669/959 30- 31 I2 J g [5/57] Statistical weight for the transition -------------------------------------------------------------------------------- Note (1): The transition from the upper to lower level results in the emission of the observed line listed in the first column. Note (2): From Black & Dalgarno 1976ApJ...203..132B 1976ApJ...203..132B; Huber & Hertzberg 1979, Constants of Diatomic Molecules (New York: Van Nostrand); Roussel et al. 2007, J/ApJ/669/959. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 17 A17 --- Name Galaxy identifier 19- 27 F9.5 deg RAdeg Right Ascension in decimal degrees (J2000) 29- 35 F7.3 deg DEdeg Declination in decimal degrees (J2000) 37 A1 --- l_S(0) [<] Limit flag on S(0) 39- 41 I3 10-18W/m2 S(0) [1/225] H2 S(0) rotational emission line flux 43- 45 I3 10-18W/m2 e_S(0) [1/286]? Uncertainty in S(0) flux 47 A1 --- l_S(1) [<] Limit flag on S(1) flux 49- 51 I3 10-18W/m2 S(1) [4/470] H2 S(1) rotational emission line flux 53- 54 I2 10-18W/m2 e_S(1) [1/16]? Uncertainty in S(1) flux 56 A1 --- l_S(2) [<] Limit flag on S(2) flux 58- 60 I3 10-18W/m2 S(2) [2/332] H2 S(2) rotational emission line flux 62- 64 I3 10-18W/m2 e_S(2) [1/104]? Uncertainty in S(2) flux 66 A1 --- l_S(3) [<] Limit flag on S(3) flux 68- 70 I3 10-18W/m2 S(3) [2/672]? H2 S(3) rotational emission line flux 72- 73 I2 10-18W/m2 e_S(3) [1/17]? Uncertainty in S(3) flux 75- 76 A2 --- Merger Merger stage (1) -------------------------------------------------------------------------------- Note (1): Stierwalt et al. (2014, J/ApJ/790/124) give H2 S(3) fluxes obtained by simultaneously fitting the dust and gas absorption, emission and continuum gas and dust features. To achieve this Stierwalt et al. (2014, J/ApJ/790/124) scale the Short-Low (SL) spectra to match the Long-Low (LL) spectra. The GOALS sources were classified in 5 stages, Petric et al. (2011ApJ...730...28P 2011ApJ...730...28P); Stierwalt et al. (2013, J/ApJS/206/1), e.g. Fig. 10 in Petric et al. (2011ApJ...730...28P 2011ApJ...730...28P). The merger classifications for each LIRG is given in Stierwalt et al. (2013, J/ApJS/206/1) and a subset was re-evaluated by Larson et al. (2016ApJ...825..128L 2016ApJ...825..128L). Here we compress the merger stages in three categories: nm = Non mergers: targets without obvious signs of morphological disturbances; em = Early-mergers: galaxies are within 1 arcmin of each other but show little or no morphological disturbance; m = Mergers: this includes all other stages of gravitational interactions. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Name Galaxy identifier 18- 21 I4 km/s FWHM [583/1318] S(1) full-width at half-maximum 23- 26 I4 km/s FWHMi [281/1215] Intrinsic S(1) full-width at half-maximum 28- 30 I3 km/s e_FWHMi [35/173] Uncertainty in FWHMi 32 I1 --- [NeV] [0/1] [Ne V] detection flag (1=detected; 0=not detected) 34 I1 --- [OIV] [0/1] [O IV] detection flag (1=detected; 0=not detected) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 17 A17 --- Name Galaxy identifier 19- 25 A7 --- OName Other galaxy identifier 27- 34 F8.4 deg RAdeg Right Ascension in decimal degrees (J2000) 36- 43 F8.4 deg DEdeg Declination in decimal degrees (J2000) 45- 47 I3 K T1 [15/650] Temperature of first gas component 49- 53 F5.3 [Msun] logM1 [5.77/9.228] Log mass of first gas component 55- 57 I3 K T2 [11/863]? Temperature of second gas component 59- 63 F5.3 [Msun] logM2 [5.305/8.869]? Log mass of second gas component 65- 67 I3 K Tavg [46/650] Mass averaged temperature 69- 73 F5.3 [Msun] logMtot [5.77/9.253] Total warm H2 gas mass -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Tiphaine Pouvreau [CDS] 26-Apr-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line