J/AJ/160/201    Infrared transmission spectrum for Kepler-79d   (Chachan+, 2020)

A Featureless infrared transmission spectrum for the super-puff planet Kepler-79d. Chachan Y., Jontof-Hutter D., Knutson H.A., Adams D., Gao P., Benneke B., Berta-Thompson Z., Dai F., Deming D., Ford E.B., Lee E.J., Libby-Roberts J.E., Madhusudhan N., Wakeford H.R., Wong I. <Astron. J., 160, 201 (2020)> =2020AJ....160..201C 2020AJ....160..201C
ADC_Keywords: Exoplanets; Stars, variable; Spectra, infrared Keywords: Exoplanet atmospheres ; Exoplanet evolution ; Exoplanets Abstract: Extremely low-density planets ("super-puffs") are a small but intriguing subset of the transiting planet population. With masses in the super-Earth range (1-10M⊕) and radii akin to those of giant planets (>4R⊕), their large envelopes may have been accreted beyond the water snow line and many appear to be susceptible to catastrophic mass loss. Both the presence of water and the importance of mass loss can be explored using transmission spectroscopy. Here, we present new Hubble space telescope WFC3 spectroscopy and updated Kepler transit depth measurements for the super-puff Kepler-79d. We do not detect any molecular absorption features in the 1.1-1.7µm WFC3 bandpass, and the combined Kepler and WFC3 data are consistent with a flat-line model, indicating the presence of aerosols in the atmosphere. We compare the shape of Kepler-79d transmission spectrum to predictions from a microphysical haze model that incorporates an outward particle flux due to ongoing mass loss. We find that photochemical hazes offer an attractive explanation for the observed properties of super-puffs like Kepler-79d, as they simultaneously render the near-infrared spectrum featureless and reduce the inferred envelope mass-loss rate by moving the measured radius (optical depth unity surface during transit) to lower pressures. We revisit the broader question of mass-loss rates for super-puffs and find that the age estimates and mass-loss rates for the majority of super-puffs can be reconciled if hazes move the photosphere from the typically assumed pressure of ∼10mbar to ∼10µbar. Description: We observed transits of Kepler-79d with Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) instrument on UT 2018 April 12 and UT 2018 November 6 (PI: Jontof-Hutter, GO: 15138). Objects: ---------------------------------------------------------------- RA (2000) DE Designation(s) (Period) ---------------------------------------------------------------- 20 02 04.11 +44 22 53.6 Kepler-79d = Kepler-79d (P=52.0897d) ---------------------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table3.dat 42 18 Spectroscopic light curve fit results table6.dat 104 23 Planet properties fig4.dat 240 10000 Transit Time Variations (TTV) posterior samples -------------------------------------------------------------------------------- See also: VI/39 : Model Atmospheres (Kurucz, 1979) J/ApJ/723/L223 : Radial velocities of HAT-P-11 (Winn+, 2010) J/A+A/529/A75 : Limb-darkening coefficients (Claret+, 2011) J/ApJ/747/35 : HST/WFC3 transit observation of GJ1214b (Berta+, 2012) J/ApJ/790/146 : Planets Kepler's multi-transiting systems (Fabrycky+, 2014) J/ApJ/785/15 : Transit times for Kepler-79's planets (Jontof-Hutter+, 2014) J/ApJS/211/24 : Rotation periods of Kepler MS stars (McQuillan+, 2014) J/ApJS/210/25 : Transit timing variation for 15 planetary pairs. II. (Xie,2014) J/ApJ/806/183 : Planet radii of Kepler Object of Interest (Wolfgang+, 2015) J/A+A/586/A75 : Simulations of hot gas planets atmospheres (Salz+, 2016) J/MNRAS/466/1868 : Neptune-like planets low-density overabund. (Cubillos+ 2017) J/AJ/154/109 : California-Kepler Survey. III. Planet radii (Fulton+, 2017) J/AJ/154/5 : Transit timing variations of 145 Kepler planets (Hadden+, 2017) J/AJ/154/107 : California-Kepler Survey (CKS). I. 1305 stars (Petigura+, 2017) J/AJ/156/264 : California-Kepler Survey. VII. Planet radius gap (Fulton+,2018) J/AJ/158/244 : HAT-P-11b spectroscopic light curve fit results (Chachan+,2019) J/AJ/157/174 : Transiting planets Kepler-47 circumbinary system (Orosz+, 2019) J/ApJ/874/L31 : Giant planet bulk & atmosphere metallicities (Thorngren+, 2019) J/AJ/159/57 : HST spectroscopic LCs of Kepler 51b & 51d (Libby-Roberts+,2020) Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 F5.3 um Wavemin [1.12/1.63] Lower wavelength edge of Bandpass 7- 11 F5.3 um Wavemax [1.15/1.66] Upper wavelength edge of Bandpass 13- 17 F5.3 um Wave [1.13/1.65] Mean wavelength edge of Bandpass 19- 25 F7.5 --- RpR [0.04/0.06] Ratio of the planet's and star's radii 27- 33 F7.5 --- e_RpR [0.001/0.002] The 1σ uncertainty in Rp/R* 35- 38 I4 ppm Depth [2057/2719] Transit depth of the planet 40- 42 I3 ppm e_Depth [101/161] 1σ uncertainty in transit depth -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Planet Planet identification 14- 14 A1 --- r_Planet Planetary data reference flag (1) 16- 19 F4.1 Mgeo Mass [1.9/62.1] Planet mass 21- 24 F4.1 Mgeo E_Mass [0.3/10.2] 1σ upper uncertainty in Mass 26- 29 F4.1 Mgeo e_Mass [0.2/10.9] 1σ lower uncertainty in Mass 31- 34 F4.1 Rgeo Rad [2.8/10.1] Planet radius 36- 38 F3.1 Rgeo e_Rad [0.1/2.8] The 1σ uncertainty in Rad 40- 43 F4.2 g/cm3 rho [0.03/0.95] Planet density 45- 48 F4.2 g/cm3 E_rho [0.01/0.69] 1σ upper uncertainty in rho 50- 53 F4.2 g/cm3 e_rho [0.01/0.48] 1σ lower uncertainty in rho 55- 60 F6.4 au a [0.0752/0.4907] Planet semi-major axis 62- 67 F6.4 au e_a [0.0008/0.004] The 1σ uncertainty in a 69- 73 F5.1 Earth Sinc [2.6/414.4] Incident stellar flux 75- 78 F4.1 Earth e_Sinc [0.2/57.1] The 1σ uncertainty in Sinc 80- 83 F4.1 [Gyr] [Age] [0.5/11.7] log, Planet age 85- 87 F3.1 [Gyr] E_[Age] [0.2/4.2] 1σ upper uncertainty in [Age] 89- 91 F3.1 [Gyr] e_[Age] [0.2/4.0] 1σ lower uncertainty in [Age] 93- 96 F4.1 [Gyr] [lifeTime] [-2.6/3.4] log, planet atmospheric lifetime 98-100 F3.1 [Gyr] E_[lifeTime] [0.1/7.2] 1σ upper uncertainty in [lifeTime] 102-104 F3.1 [Gyr] e_[lifeTime] [0.1/4.9] 1σ lower uncertainty in [lifeTime] -------------------------------------------------------------------------------- Note (1): References as follows : a = (18 occurrences) Mass ratio posteriors from Hadden & Lithwick, 2017, J/AJ/154/5. Stellar masses, planetary radii, semi-major axes, incident stellar fluxes, and ages from Fulton & Petigura, 2018, J/AJ/156/264. b = (3 occurrences) Mass ratio posteriors, planetary radii, and stellar age from Libby-Roberts+, 2020, J/AJ/159/57. Stellar mass, semi-major axes, and incident stellar fluxes from Fulton & Petigura, 2018, J/AJ/156/264. c = (2 occurrences) Mass ratio posteriors and planetary radii from this study. Stellar masses, semi-major axes, incident stellar fluxes, and ages from Fulton & Petigura, 2018, J/AJ/156/264. -------------------------------------------------------------------------------- Byte-by-byte Description of file: fig4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 F11.8 Mgeo Massb Planet mass for stellar mass=1 Msun, Kepler-79b (1) 13- 23 F11.8 d Perb Orbital period, Kepler-79b 25- 35 F11.8 --- esinwb Eccentricity vector sinus component, Kepler-79b 37- 47 F11.8 --- ecoswb Eccentricity vector cosinus component, Kepler-79b 49- 60 F12.8 d T0b First transit after epoch, Kepler-79b (2) 62- 71 F10.8 Mgeo Massc Planet mass for stellar mass=1 Msun, Kepler-79c (1) 73- 83 F11.8 d Perc Orbital period, Kepler-79c 85- 95 F11.8 --- esinwc Eccentricity vector sinus component, Kepler-79c 97-107 F11.8 --- ecoswc Eccentricity vector cosinus component, Kepler-79c 109-120 F12.8 d T0c First transit after epoch, Kepler-79c (2) 122-131 F10.8 Mgeo Massd Planet mass for stellar mass=1 Msun, Kepler-79d (1) 133-143 F11.8 d Perd Orbital period, Kepler-79d 145-155 F11.8 --- esinwd Eccentricity vector sinus component, Kepler-79d 157-167 F11.8 --- ecoswd Eccentricity vector cosinus component, Kepler-79d 169-180 F12.8 d T0d First transit after epoch, Kepler-79d (2) 182-191 F10.8 Mgeo Masse Planet mass for stellar mass=1 Msun, Kepler-79e (1) 193-203 F11.8 d Pere Orbital period, Kepler-79e 205-215 F11.8 --- esinwe Eccentricity vector sinus component, Kepler-79e 217-227 F11.8 --- ecoswe Eccentricity vector cosinus component, Kepler-79e 229-240 F12.8 d T0e First transit after epoch, Kepler-79e (2) -------------------------------------------------------------------------------- Note (1): Planet mass in units of (Mp/Mstar)*(Msun/Mearth). Multiply by Kepler-79's mass (in units of solar mass) to obtain true planet mass in Earth masses. Note (2): Epoch = 780.0 and t0 corresponds to BJD-2454900. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Coralie Fix [CDS], 13-Jan-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line