J/AJ/165/145            FeI and FeII abundances with LOTUS           (Li+, 2023)

LOTUS; A (Non-)LTE Optimization Tool for Uniform Derivation of Stellar Atmospheric Parameters. Li Y., Ezzeddine R. <Astron. J., 165, 145 (2023)> =2023AJ....165..145L 2023AJ....165..145L (SIMBAD/NED BibCode)
ADC_Keywords: Models; Stars, atmospheres; Abundances, [Fe/H]; Effective temperatures; Spectra, optical Keywords: Stellar physics; Stellar atmospheres; Astronomical techniques Spectroscopy; Stellar abundances; Effective temperature Surface gravity; Metallicity; Fundamental parameters of stars Stellar photospheres Abstract: Precise fundamental atmospheric stellar parameters and abundance determination of individual elements in stars are important for all stellar population studies. Non-local thermodynamic equilibrium (non-LTE; hereafter NLTE) models are often important for such high precision, however, can be computationally complex and expensive, which renders the models less utilized in spectroscopic analyses. To alleviate the computational burden of such models, we developed a robust 1D, NLTE fundamental atmospheric stellar parameter derivation tool, LOTUS, to determine the effective temperature Teff, surface gravity logg, metallicity [Fe/H], and microturbulent velocity vmic for FGK-type stars, from equivalent width (EW) measurements of FeI and FeII lines. We utilize a generalized curve of growth method to take into account the EW dependencies of each FeI and FeII line on the corresponding atmospheric stellar parameters. A global differential evolution optimization algorithm is then used to derive the fundamental parameters. Additionally, LOTUS can determine precise uncertainties for each stellar parameter using a Markov Chain Monte Carlo algorithm. We test and apply LOTUS on a sample of benchmark stars, as well as stars with available asteroseismic surface gravities from the K2 survey, and metal-poor stars from the Gaia-ESO and R-Process Alliance surveys. We find very good agreement between our NLTE-derived parameters in LOTUS to nonspectroscopic values on average within Teff=±30K, and logg=±0.10dex for benchmark stars. We provide open access of our code, as well as of the interpolated precomputed NLTE EW grids available on Github (the software is available on GitHubunder an MIT License, and version 0.1.1 (as the persistent version) is archived in Zenodo) and documentation with working examples. Description: We present the open-source code, local thermodynamic equilibrium (LTE) optimization tool for uniform derivation of stellar atmospheric parameters (LOTUS), developed to automatically derive fast and precise atmospheric stellar parameters (Teff, logg, [Fe/H], and vmic) of stars in 1D, LTE, and 1D, Non-LTE using FeI and FeII equivalent width measurement from stellar spectra. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 24 459 FeI and FeII linelist selected for LOTUS table3.dat 134 179 Derived stellar atmospheric parameters of the target stars -------------------------------------------------------------------------------- See also: III/283 : RAVE 6th data release (Steinmetz+, 2020) V/154 : Sloan Digital Sky Surveys (SDSS), Release 16 (DR16) (Ahumada+, 2020) J/PASJ/57/109 : Late-G giants abundances (Takeda+, 2005) J/A+A/512/A54 : Teff and Fbol from Infrared Flux Method (Casagrande+, 2010) J/A+A/530/A138 : Geneva-Copenhagen survey re-analysis (Casagrande+, 2011) J/A+A/558/A38 : FAMA code stellar parameters and abundances (Magrini+, 2013) J/ApJ/769/57 : Equivalent widths of metal-poor stars (Frebel+, 2013) J/A+A/564/A119 : CoRoT red giants abundances (Morel+, 2014) J/A+A/564/A133 : Gaia FGK benchmark stars; metallicity (Jofre+, 2014) J/A+A/575/A26 : Properties of Population II star HD 140283 (Creevey+, 2015) J/MNRAS/450/397 : Spectroscopic study of RGs in Kepler field (Takeda+, 2015) J/A+A/587/A2 : SP_Ace derived data from stellar spectra (Boeche+, 2016) J/A+A/592/A70 : Gaia FGK stars; low-metallicities candidates (Hawkins+, 2016) J/AJ/151/144 : ASPCAP weight for 15 APOGEE chemical elements (Garcia+, 2016) J/A+A/608/A89 : Very metal poor stars in MW halo (Mashonkina+, 2017) J/ApJ/847/142 : Ultrametalpoor stars LTE & NLTE abundances (Ezzeddine+, 2017) J/A+A/612/A90 : Inelastic Fe+H collision data (Barklem, 2018) J/AJ/156/18 : APOGEE DR14;Binary comp. evolved stars (Price-Whelan+, 2018) J/ApJ/858/92 : RPA Southern Pilot Search of 107 Stars (Hansen+, 2018) J/ApJ/865/129 : Abundance analysis of HD 222925 (Roederer+, 2018) J/ApJ/868/110 : R-Process Alliance; DR1 in Galactic halo (Sakari+, 2018) J/A+A/625/A33 : Radial velocity time series of HD 122563 (Creevey+, 2019) J/A+A/628/A54 : Fe, Mg, Ti in Galactic clusters (Kovalev+, 2019) J/A+A/640/A25 : Metal-poor stars limb-darkening coeff. (Karovicova+, 2020) J/A+A/643/A83 : K2-Gaia-ESO stellar param. and abundances (Worley+, 2020) J/ApJ/898/150 : High-res. MIKE obs. of metal-poor stars (Ezzeddine+, 2020) J/ApJS/249/30 : R-Process Alliance; metal-poor star spectro (Holmbeck+, 2020) J/A+A/645/A106 : Atomic data for the Gaia-ESO Survey (Heiter+, 2021) J/A+A/650/A194 : Titans metal-poor reference stars. I. (Giribaldi+, 2021) J/A+A/658/A47 : Dwarf stars limb-darkening coefficients (Karovicova+, 2022) J/A+A/658/A48 : 7 giants/subgiants limb-darkening coeff (Karovicova, 2022) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- Species Species 6- 12 F7.2 0.1nm Wave [3440/8221] Wavelength, Angstroms 14- 17 F4.2 eV ExPot [0/5.1] Excitation potential 19- 24 F6.3 [-] loggf [-5.97/0.65] log, statistical weight*oscillator strength -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 1 I1 --- Subset [1/5] Subset (1) 3- 19 A17 --- Name Star Name (2) 21- 24 I4 K Teff-LTE [4270/6493] LTE Surface Effective Temperature, LTE 26- 28 I3 K e_Teff-LTE [15/289] Uncertainty in Teff-LTE 30- 33 F4.2 [cm/s2] logg-LTE [0.06/4.55] log, surface gravity, cgs, LTE 35- 38 F4.2 [cm/s2] e_logg-LTE [0.03/1] Uncertainty in logg-LTE 40- 44 F5.2 [-] FeH-LTE [-3.17/0.42] Metallicity, LTE 46- 49 F4.2 [-] e_FeH-LTE [0.01/0.3] Uncertainty in FeH-LTE 51- 54 F4.2 km/s vt-LTE [0.59/2.81] microturbulent velocity, LTE 56- 59 F4.2 km/s e_vt-LTE [0.01/0.7] Uncertainty in vt-LTE 61- 63 A3 --- NFeI-LTE Number, FeI lines, LTE 65- 66 A2 --- NFeII-LTE Number, FeII lines, LTE 68- 70 F3.1 --- Chi-LTE [0/2.7] Cutoff, χ^2, LTE 72- 75 I4 K Teff-NLTE [4234/6407] Surface Effective Temperature, NLTE 77- 79 I3 K e_Teff-NLTE [15/251] Uncertainty in Teff-LTE 81- 84 F4.2 [cm/s2] logg-NLTE [0.11/4.66] log, surface gravity, cgs, NLTE 86- 89 F4.2 [cm/s2] e_logg-NLTE [0.04/0.8] Uncertainty in logg-LTE 91- 95 F5.2 [-] FeH-NLTE [-3.01/0.45] Metallicity, NLTE 97-100 F4.2 [-] e_FeH-NLTE [0.01/0.3] Uncertainty in FeH-LTE 102-105 F4.2 km/s vt-NLTE [0.63/2.8] microturbulent velocity, NLTE 107-110 F4.2 km/s e_vt-NLTE [0.01/0.4] Uncertainty in vt-LTE 112-114 A3 --- NFeI-NLTE Number, FeI lines, NLTE 116-117 A2 --- NFeII-NLTE Number, FeII lines, NLTE 119-121 F3.1 --- Chi-NLTE [0/2.7] Cutoff, χ2, NLTE 123-128 F6.2 --- SNR [19/850] Signal-to-Noise 130-134 A5 --- Ref References (3) -------------------------------------------------------------------------------- Note (1): Subset as follows: 1 = Widely analyzed stars 2 = GES Metal-Poor Stars, Hawkins+, 2016, J/A+A/592/A70 3 = CHARA Interferometry Stars, Karovicova+, 2020, J/A+A/640/A25, & 2022, J/A+A/658/A47 and 2022, J/A+A/658/A48 4 = R-Process Alliance Stars, Hansen+, 2018, J/ApJ/858/92 5 = GES-K2 Stars, Worley+, 2020, J/A+A/643/A83 Note (2): For HD121370, parameters are obtained with the average of runs inputting 3 different EW line lists: EPINARBO and BOLOGNA in Heiter+, 2015A&A...582A..49H 2015A&A...582A..49H, and Takeda+, 2005ARA&A..43..481A 2005ARA&A..43..481A. In LTE, there are NFeI=79,121,46, NFeII=6,9,4 lines in these three line list respectively; In NLTE,NFeI=79,121,47, NFeII=6,9,4 Note (3): References as follows: F2013 = Frebel+, 2013, J/ApJ/769/57 H2015 = Heiter+, 2015A&A...582A..49H 2015A&A...582A..49H H2016 = Hawkins+, 2016A&A...592A..70H 2016A&A...592A..70H H2018 = Hansen+, 2018, J/ApJ/858/92 L2020 = Liu+, 2020, J/MNRAS/495/3961 M2014 = Morel+, 2014, J/A+A/564/A119 T2005 = Takeda+, 2005ARA&A..43..481A 2005ARA&A..43..481A T2015 = Takeda & Tajitsu, 2015, J/MNRAS/450/397 W2020 = Worley+, 2020, J/A+A/643/A83 -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Coralie Fix [CDS], 19-Jul-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line