J/AJ/165/267 O2 levels in Nearby Transiting Exoplanets (Hardegree-Ullman+, 2023)

Bioverse; A Comprehensive Assessment of the Capabilities of Extremely Large Telescopes to Probe Earth-like O2 Levels in Nearby Transiting Habitable-zone Exoplanets. Hardegree-Ullman K.K., Apai D., Bergsten G.J., Pascucci I., Lopez-Morales M. <Astron. J., 165, 267 (2023)> =2023AJ....165..267H 2023AJ....165..267H
ADC_Keywords: Exoplanets; Stars, M-type; Spectra, optical Keywords: Fundamental parameters of stars ; Exoplanet systems ; Exoplanets ; Exoplanet atmospheres ; Biosignatures Abstract: Molecular oxygen is a strong indicator of life on Earth and may indicate biological processes on exoplanets too. Recent studies proposed that Earth-like O2 levels might be detectable on nearby exoplanets using high-resolution spectrographs on future extremely large telescopes (ELTs). However, these studies did not consider constraints like relative velocities, planet occurrence rates, and target observability. We expanded on past studies by creating a homogeneous catalog of 286391 main-sequence stars within 120pc using Gaia DR3 and used the Bioverse framework to simulate the likelihood of finding nearby transiting Earth analogs. We also simulated a survey of M dwarfs within 20pc accounting for η⊕ estimates, transit probabilities, relative velocities, and target observability to determine how long ELTs and theoretical 50-100m ground-based telescopes need to observe to probe for Earth-like O2 levels with an R=100000 spectrograph. This would only be possible within 50yr for up to ∼21% of nearby M-dwarf systems if a suitable transiting habitable-zone Earth analog was discovered, assuming signals from every observable partial transit from each ELT can be combined. If so, Earth-like O2 levels could be detectable on TRAPPIST-1 d-g within 16-55yr, respectively, and about half that time with an R=500000 spectrograph. These results have important implications for whether ELTs can survey nearby habitable-zone Earth analogs for O2 via transmission spectroscopy. Our work provides the most comprehensive assessment to date of the ground-based capabilities to search for life beyond the solar system. Description: We created a homogeneous catalog of 286391 main-sequence stars within 120pc using Gaia DR3 and used the Bioverse framework to simulate the likelihood of finding nearby transiting Earth analogs. We also simulated a survey of M-dwarfs within 20pc accounting for η⊕ estimates, transit probabilities, relative velocities, and target observability to determine how long ELTs and theoretical 50-100m ground-based telescopes need to observe to probe for Earth-like O2 levels with an R=100000 spectrograph. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 334 286391 Photo-astrometric properties of main sequence stars within 120pc table2.dat 59 1461 Habitable zone properties for M dwarfs within 20pc table3.dat 123 1461 *Simulated average number of visible full transits per year from each ELT for a hypothetical habitable zone Earth-sized planet orbiting M-dwarfs within 20pc table4.dat 123 1461 *Simulated average number of visible partial transits per year from each ELT for a hypothetical habitable zone Earth-sized planet orbiting M-dwarfs within 20pc table5.dat 162 1461 Time span required to probe for Earth-like O2 levels at 3σ significance on a hypothetical transiting habitable zone Earth analog orbiting M-dwarfs within 20pc (full transits) table6.dat 162 1461 Time span required to probe for Earth-like O2 levels at 3σ significance on a hypothetical transiting habitable zone Earth analog orbiting M-dwarfs within 20 pc (partial transits) -------------------------------------------------------------------------------- Note on table3.dat and table4.dat: For each ELT, we consider the number of full transits visible from the ground per year with no relative system velocity requirements (None), considering relative system velocities required to observe in the O2 A and IR bands separately, when relative system velocities allow both A and IR band observations, and the best case O2 band scenario, which is the maximum of the A, IR, and A+IR columns. Blanks indicate our simulations yielded no observable transits for that particular scenario. -------------------------------------------------------------------------------- See also: B/simbad : Simbad objects catalogue (M.Wenger 2000) I/337 : Gaia DR1 (Gaia Collaboration, 2016) J/MNRAS/325/1365 : Solarneighbourhood metallicity distribution (Haywood+, 2001) J/ApJS/190/1 : A survey of stellar families (Raghavan+, 2010) J/other/A+ARV/18.67 : Accurate masses and radii of normal stars (Torres+, 2010) J/A+A/530/A138 : Geneva-Copenhagen survey re-analysis (Casagrande+, 2011) J/A+A/533/A141 : Stellar parameters for 582 HARPS FGK stars (Sousa+, 2011) J/ApJS/208/9 : Intrinsic colors & temperatures of PMS stars (Pecaut+, 2013) J/ApJ/783/4 : Prop. of Kepler multi-planet candidate systems (Wang+, 2014) J/ApJ/807/45 : Pot. habitable planets orbiting M dwarfs (Dressing+, 2015) J/ApJ/804/64 : Empirical and model parameters of 183 M dwarfs (Mann+, 2015) J/ApJ/814/130 : Planet occurrence rates calculated for KOIs (Mulders+, 2015) J/ApJS/220/16 : SpeX NIR survey of 886 nearby M dwarfs (Terrien+, 2015) J/ApJ/818/153 : MEarth photometry; nearby Mdwarf magnitudes (Dittmann+, 2016) J/AJ/152/8 : Impact of stellar mult. on planetary systems I (Kraus+, 2016) J/AJ/154/109 : California-Kepler Survey. III. Planet radii (Fulton+, 2017) J/AJ/153/71 : Kepler follow-up observation program. I. (Furlan+, 2017) J/ApJS/239/2 : Simulated exoplanets from TESS list targets (Barclay+, 2018) J/AJ/158/87 : 86 cool dwarfs observed K2 Campaigns 1-17 (Dressing+, 2019) J/AJ/158/75 : Mid-type Mdwarfs planet occurrence (Hardegree-Ullman+, 2019) J/ApJ/871/63 : Constrain your M dwarf. II. Nearby binaries (Mann+, 2019) J/AJ/157/216 : Stellar multiplicity of Mdwarfs within 25pc (Winters+, 2019) J/A+A/624/A49 : Spectra Earth-like planets around Mdwarfs (Wunderlich+, 2019) J/ApJS/247/28 : K2 parameters from Gaia & LAMOST (Hardegree-Ullman+, 2020) J/A+A/642/A121 : LHS1140 radial velocity data (Lillo-Box+, 2020) J/AJ/160/19 : 827 ultracool dwarfs with K2 (Sagear+, 2020) J/A+A/641/A170 : Ultracool dwarf K2 light curves (Sestovic+, 2020) J/AJ/161/36 : 117 exoplanets in habitable zone Kepler DR25 (Bryson+, 2021) J/MNRAS/506/150 : The GALAH+ Survey DR3 (Buder+, 2021) J/A+A/649/A6 : Gaia Cat. of Nearby Stars - GCNS (Gaia collaboration, 2021) J/A+A/649/A3 : Gaia EDR 3 photometric passbands (Riello+, 2021) J/A+A/667/A59 : LP 890-9 (TOI-4306) light curves and RVs (Delrez+, 2022) J/A+A/664/A65 : Early-M dwarfs occurrence rates (Pinamonti+, 2022) J/AJ/163/200 : Robo-AO of northern stars companions (Salama+, 2022) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 I19 --- Gaia ? Gaia DR3 source identifier 21- 37 A17 --- 2MASS 2MASS identifier 39- 72 A34 --- Name Object name from SIMBAD 74- 84 F11.7 deg RAdeg [0/360] Right ascension (J2000) 86- 96 F11.7 deg DEdeg [-90/90] Declination (J2000) 98-107 F10.4 mas/yr pmRA [-4407/6766]? Proper motion in RA direction 109-116 F8.4 mas/yr e_pmRA [0.004/20]? Standard error in pmRA 118-128 F11.4 mas/yr pmDE [-5818/10363]? Proper motion in DE direction 130-137 F8.4 mas/yr e_pmDE [0.005/24]? Standard error in pmDE 139-146 F8.4 mag Gmag [2.68/21.1]? Gaia DR3 G-band mean magnitude 148-154 F7.4 mag e_Gmag [0.0002/0.3]? Error in Gmag 156-163 F8.4 mag BPmag [3.18/24.7]? Gaia DR3 integrated BP mean magnitude 165-171 F7.4 mag e_BPmag [0.0005/3]? Error in BPmag 173-180 F8.4 mag RPmag [2.55/19.9]? Gaia DR3 integrated RP mean magnitude 182-188 F7.4 mag e_RPmag [0.0004/3]? Error on RPmag 190-196 F7.3 mag Vmag [0.01/22.2]? Apparent V-band Vega magnitude 198-203 F6.3 mag e_Vmag [0.001/1]? Error in Vmag 205-211 F7.3 mag Ksmag [-2.01/17.4]? Apparent Ks band magnitude 213-218 F6.3 mag e_Ksmag [0.01/1]? Error in Ksmag 220-226 F7.3 pc Dist [1.3/120] Gaia DR3 based distance 228-234 F7.3 pc E_Dist [0/116] Upper uncertainty in Dist 236-241 F6.3 pc e_Dist [0/60] Lower uncertainty in Dist 243-246 I4 K Teff [2301/9903] Stellar effective surface temperature 248-251 I4 K e_Teff [70/9074] Uncertainty in Teff 253-260 E8.3 Lsun Lum [2.84e-05/45.1] Stellar luminosity 262-269 E8.3 Lsun e_Lum [2.3e-06/29.6] Uncertainty in Lum 271-275 F5.3 Rsun Rad [0.09/2.5] Stellar radius 277-281 F5.3 Rsun e_Rad [0.003/3] Uncertainty in Rad 283-287 F5.3 Msun Mass [0.08/2.45] Stellar mass 289-293 F5.3 Msun e_Mass [0.003/0.7] Uncertainty in Mass 295-300 F6.2 --- RUWE [0.46/96.6]? Gaia DR3 renormalised unit weight error 302-302 A1 --- GCNS T/F if Gaia Catalogue of Nearby Stars binary (Gaia Collaboration+, 2021, J/A+A/649/A6) 304-304 A1 --- Gaiabin T/F if Gaia EDR3 binary; El-Badry+, 2021MNRAS.506.2269E 2021MNRAS.506.2269E 306-306 A1 --- AObin T/F if Robo-AO binary; Salama+, 2022, J/AJ/163/200 308-308 A1 --- DR3bin T/F if Gaia DR3 non-single star; Gaia Collaboration+, 2022arXiv220605595G 2022arXiv220605595G 310-310 A1 --- SIMBADbin T/F if eclipsing or spectroscopic binary on SIMBAD; Wenger+, 2000A&AS..143....9W 2000A&AS..143....9W 312-312 A1 --- Any-bin T/F if binary in any referenced catalog 314-322 F9.4 --- SVel [-862/796]? Systemic velocity 324-332 F9.4 --- e_SVel [0/999]? Uncertainty in SVel 334-334 I1 --- r_SVel [1/3]? Reference for systemic velocity (1) -------------------------------------------------------------------------------- Note (1): References as follows: 1 = Katz+, 2022arXiv220605902K 2022arXiv220605902K 2 = Literature values from SIMBAD; Wenger+, 2000A&AS..143....9W 2000A&AS..143....9W 3 = This work. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 30 A30 --- Name Object name from SIMBAD 32- 36 F5.3 AU ainner [0.01/0.39] Inner edge of the habitable zone 38- 42 F5.3 AU aouter [0.03/0.7] Outer edge of the habitable zone 44- 47 F4.2 % Prob [0.6/3.18] Geometric transit probability (1) 49- 54 F6.2 d Period [5.54/179] Average orbital period (1) 56- 59 F4.2 h T14 [0.8/8.4] Average transit duration (1) -------------------------------------------------------------------------------- Note (1): For a 1REarth planet in the middle of the star's habitable zone. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table[34].dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 30 A30 --- Name Object name from SIMBAD 32- 33 I2 --- Ntrans Approximate number of transits per year (1) 35- 39 F5.2 --- GMT-None ? Average expected number of transits visible from the GMT per year 41- 45 F5.2 --- GMT-A ? Average expected number of transits visible from the GMT (2) 47- 51 F5.2 --- GMT-IR ? Average expected number of transits visible from the GMT (3) 53- 57 F5.2 --- GMT-A+IR ? Average expected number of transits visible from the GMT (4) 59- 63 F5.2 --- GMT-Best ? Average expected number of transits visible from the GMT (5) 65- 69 F5.2 --- TMT-None ? Average expected number of transits visible from the TMT per year 71- 75 F5.2 --- TMT-A ? Average expected number of transits visible from the TMT (2) 77- 81 F5.2 --- TMT-IR ? Average expected number of transits visible from the TMT (3) 83- 87 F5.2 --- TMT-A+IR ? Average expected number of transits visible from the TMT (4) 89- 93 F5.2 --- TMT-Best ? Average expected number of transits visible from the TMT (5) 95- 99 F5.2 --- E-ELT-None ? Average expected number of transits visible from the E-ELT per year 101-105 F5.2 --- E-ELT-A ? Average expected number of transits visible from the E-ELT (2) 107-111 F5.2 --- E-ELT-IR ? Average expected number of transits visible from the E-ELT (3) 113-117 F5.2 --- E-ELT-A+IR ? Average expected number of transits visible from the E-ELT (4) 119-123 F5.2 --- E-ELT-Best ? Average expected number of transits visible from the E-ELT (5) -------------------------------------------------------------------------------- Note (1): For a habitable zone planet orbiting this star. Note (2): Considering relative system velocities amenable to A-band observations Note (3): Considering relative system velocities amenable to IRband observations Note (4): Considering relative system velocities amenable to both A and IR-band observations. Note (5): Considering the best case scenario (A, IR, or A+IR) to minimize observing time. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table[56].dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 30 A30 --- Name Object name from SIMBAD 32- 41 F10.2 yr GMT-A ? Years to detect O2 with GMT in A band 43- 52 F10.2 yr GMT-IR ? Years to detect O2 with GMT in IR band 54- 63 F10.2 yr GMT-A+IR ? Years to detect O2 with GMT in A+IR bands 65- 73 F9.2 yr TMT-A ? Years to detect O2 with TMT in A band 75- 83 F9.2 yr TMT-IR ? Years to detect O2 with TMT in IR band 85- 93 F9.2 yr TMT-A+IR ? Years to detect O2 with TMT in A+IR bands 95-103 F9.2 yr E-ELT-A ? Years to detect O2 with E-ELT in A band 105-113 F9.2 yr E-ELT-IR ? Years to detect O2 with E-ELT in IR band 115-123 F9.2 yr E-ELT-A+IR ? Years to detect O2 with E-ELT in A+IR bands 125-133 F9.2 yr Combined ? Years to detect O2 with combined signals from ELTs 135-143 F9.2 yr 50m ? Years to detect O2 with a 50-m telescope 145-153 F9.2 yr 75m ? Years to detect O2 with a 75-m telescope 155-162 F8.2 yr 100m ? Years to detect O2 with a 100-m telescope -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Prepared by [AAS], Coralie Fix [CDS], 16-Oct-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line