J/AJ/168/129  Planet-host binary systems. IV. Radius distrib.  (Sullivan+, 2024)

Revising properties of planet-host binary systems. IV. The radius distribution of small planets in binary star systems is dependent on stellar separation. Sullivan K., Kraus A.L., Berger T.A., Dupuy T.J., Evans E., Gaidos E., Huber D., Ireland M.J., Mann A.W., Petigura E.A., Thao Pa C., Wood M.L., Zhang J. <Astron. J., 168, 129 (2024)> =2024AJ....168..129S 2024AJ....168..129S
ADC_Keywords: Stars, double and multiple; Exoplanets; Effective temperatures; Stars, diameters; Spectra, optical; Infrared Keywords: Binary stars ; Super Earths ; Exoplanets ; Mini Neptunes ; Exoplanet formation ; Planet hosting stars ; Stellar astronomy Abstract: Small planets (Rp≤4R) are divided into rocky super-Earths and gaseous sub-Neptunes separated by a radius gap, but the mechanisms that produce these distinct planet populations remain unclear. Binary stars are the only main-sequence systems with an observable record of the protoplanetary disk lifetime and mass reservoir, and the demographics of planets in binaries may provide insights into planet formation and evolution. To investigate the radius distribution of planets in binary star systems, we observed 207 binary systems hosting 283 confirmed and candidate transiting planets detected by the Kepler mission, then recharacterized the planets while accounting for the observational biases introduced by the secondary star. We found that the population of planets in close binaries (ρ≤100au) is significantly different from the planet population in wider binaries (ρ>300au) or single stars. In contrast to planets around single stars, planets in close binaries appear to have a unimodal radius distribution with a peak near the expected super-Earth peak of Rp ∼1.3R and a suppressed population of sub-Neptunes. We conclude that we are observing the direct impact of a reduced disk lifetime, smaller mass reservoir, and possible altered distribution of solids reducing the sub-Neptune formation efficiency. Our results demonstrate the power of binary stars as a laboratory for exploring planet formation and as a controlled experiment of the impact of varied initial conditions on mature planet populations. Description: We assembled our list of binary stars from a variety of sources. We primarily used the catalog of binary stars from Furlan+ (2017, J/AJ/153/71), which in turn was a compilation of several sources of high-resolution imaging of KOIs. We supplemented this catalog with Robo-AO imaging presented in Ziegler+ (2018, J/AJ/155/161) and new adaptive optics (AO) imaging using the Near Infra Red Camera 2 (NIRC2) at the Keck Observatory. See Section 2.1. We present new AO imaging of KOIs using the NIRC2 AO camera on the Keck II telescope, obtained as part of an ongoing survey of the multiplicity of Kepler planet-hosting stars. The typical observing strategy was described by Kraus+ (2016, J/AJ/152/8). To briefly recap, a modest number of 20s exposures (typically 4-8, with more in marginal conditions) were obtained using a mix of natural guide star and laser guide star AO on nights spanning 2015-2022, using the narrow camera and the broadband filter centered at 2.2um. See Section 2.2. We took spectroscopic observations of the full sample of KOIs with the LRS on the 10m Hobby-Eberly Telescope (HET) between 2021 April 2 and 2023 September 26 at the McDonald Observatory. See Section 2.3. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 42 65 Excluded systems table2.dat 134 286 System parameters for each source table3.dat 64 82 New Keck/NIRC2 observations table4.dat 121 286 Stellar parameter fit results for all KOIs in our sample table5.dat 160 404 Planet parameter fit results for all planets in the binary KOI sample -------------------------------------------------------------------------------- See also: J/ApJ/696/L84 : Primordial circumstellar disks in binary syst. (Cieza+, 2009) J/ApJS/190/1 : A survey of stellar families (Raghavan+, 2010) J/AJ/142/112 : KIC photometric calibration (Brown+, 2011) J/AJ/142/19 : Speckle observations of KOI (Howell+, 2011) J/AJ/144/42 : Infrared photometry of 90 KOIs (Adams+, 2012) J/ApJ/751/115 : Millimeter emission from Taurus binary systems (Harris+, 2012) J/ApJ/745/19 : Binary systems in Taurus-Auriga (Kraus+, 2012) J/A+A/546/A10 : Mult. in transiting planet-host stars (Lillo-Box+, 2012) J/ApJS/204/24 : Kepler planetary candidates. III. (Batalha+, 2013) J/A+A/556/A15 : Effective temperature scale of M dwarfs (Rajpurohit+, 2013) J/ApJ/795/64 : Exoplanet physical parameters (Foreman-Mackey+, 2014) J/A+A/566/A103 : Kepler planet host candidates imaging (Lillo-Box+, 2014) J/ApJ/809/8 : Terrestrial planet occurrence rates for KOIs (Burke+, 2015) J/ApJ/813/130 : Kepler multiple transiting planet systems (Wang+, 2015) J/AJ/152/18 : Robo-AO Kepler planetary cand. survey. II. (Baranec+, 2016) J/AJ/152/8 : Impact of stellar mult. on planetary syst. I. (Kraus+, 2016) J/AJ/154/109 : California-Kepler Survey (CKS). III. Radii (Fulton+, 2017) J/AJ/153/71 : Kepler follow-up observation program. I. (Furlan+, 2017) J/ApJS/229/30 : Revised properties of Q1-17 Kepler targets (Mathur+, 2017) J/ApJ/866/99 : Radii of KIC stars & planets using Gaia DR2 (Berger+, 2018) J/ApJS/235/38 : Kepler planet. cand. VIII. DR25 reliability (Thompson+, 2018) J/AJ/155/161 : Stars nearby Robo-AO Kepler planetary cand. (Ziegler+, 2018) J/AJ/160/108 : Gaia-Kepler stellar properties catalog. II. (Berger+, 2020) J/ApJS/247/28 : K2 star param. from Gaia & LAMOST (Hardegree-Ullman+, 2020) J/AJ/161/265 : Compared rot. periods for 1189 CKS host stars (David+, 2021) J/AJ/161/134 : Stellar & planetary comp. within 25pc (Hirsch+, 2021) J/AJ/162/75 : Speckle obs. TESS exoplanet host stars. II. (Lester+, 2021) J/AJ/161/171 : THYME. V. Discovering a new stellar assoc. (Tofflemire+, 2021) J/AJ/163/179 : The California-Kepler Survey. X. (Petigura+, 2022) J/ApJ/928/134 : NIR phot. & optical veiling in T Tauri stars (Sullivan+, 2022) J/AJ/165/177 : Planet-Host Binary Systems. III. (Sullivan+, 2023) J/AJ/165/85 : THYME. IX. MELANGE-4 association members (Wood+, 2023) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- --- [KOI-] 5- 8 I04 --- KOI [5/6610] Kepler object of interest 10- 24 A15 --- Reason Reason for exclusion 26- 42 A17 --- Source Source of exclusion information -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 I04 --- KOI [42/8253] Kepler object of interest identifier 6- 9 F4.2 arcsec Sep [0.02/3.72] Angular separation 11- 20 A10 "Y/M/D" Date Observation date 22- 26 F5.2 mag rmag [9.33/17.11] r'-band magnitude 28- 31 I4 --- SNR [37/2095] Signal-to-Noise Ratio 33- 36 F4.2 mag dmi [0.01/4.3]? Observed contrast, i-band magnitude 38- 41 F4.2 mag e_dmi [0.01/3.5]? Uncertainty in dmi 43- 46 F4.2 mag dmLP600 [0.03/5]? Observed contrast, LP600 magnitude 48- 51 F4.2 mag e_dmLP600 [0.02/0.6]? Uncertainty in dmLP600 53- 56 F4.2 mag dmGaia [0/5.3]? Observed contrast, Gaia G-band magnitude 58- 61 F4.2 mag e_dmGaia [0/0.1]? Uncertainty in dmGaia 63- 66 F4.2 mag dm562nm [0/4.3]? Observed contrast, 562nm magnitude 68- 71 F4.2 mag e_dm562nm [0.15]? Uncertainty in dm562nm 73- 76 F4.2 mag dm692nm [0.12/6]? Observed contrast, 692nm magnitude 78- 81 F4.2 mag e_dm692nm [0.15/0.3]? Uncertainty in dm692nm 83- 86 F4.2 mag dm880nm [0.05/4.8]? Observed contrast, 880nm magnitude 88- 91 F4.2 mag e_dm880nm [0.1/1]? Uncertainty in dm880nm 93- 96 F4.2 mag dmJ [0/5.1]? Observed contrast, J-band magnitude 98-101 F4.2 mag e_dmJ [0.01/0.4]? Uncertainty in dmJ 103-107 F5.2 mag dmK [0/3.6]? Observed contrast, K-band magnitude 109-112 F4.2 mag e_dmK [0/0.5]? Uncertainty in dmK 114-134 A21 --- Ref References (1) -------------------------------------------------------------------------------- Note (1): References as follows: F17 = Furlan+ 2017, J/AJ/153/71 A12 = Adams+ 2012, J/AJ/144/42 H11 = Howell+ 2011, J/AJ/142/19 B16 = Baranec+ 2016, J/AJ/152/18 LB12 = Lillo-Box+ 2012, J/A+A/546/A10 LB14 = Lillo-Box+ 2014, J/A+A/566/A103 K16 = Kraus+ 2016, J/AJ/152/8 -- = Any unmarked K magnitudes are from this work. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- --- [KOI-] 5- 8 I04 --- KOI [163/8077] Kepler object of interest identifier 10- 17 F8.2 d MJD Modified Julian Date of Observation (JD-2400000.5) 19- 20 A2 --- Filt Filter 22- 23 I2 --- Nf [1/16] Number of frames 25- 31 F7.2 arcsec rho [41.5/1868] Separation 33- 37 F5.2 arcsec e_rho [1.5/11] Uncertainty in rho 39- 45 F7.3 deg PA [3.8/344] Position angle, east of north 47- 51 F5.3 deg e_PA [0.04/6] Uncertainty in PA 53- 58 F6.3 mag dmag [-0.21/3.21] Delta magnitude in Filt 60- 64 F5.3 mag e_dmag [0/0.4] Uncertainty in Δmag -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 I04 --- KOI [42/8253] Kepler object of interest identifier 6- 9 I4 K Teff1 [3493/6888] Stellar effective temperature, component 1 11- 13 I3 K E_Teff1 [3/305] Upper uncertainty in Teff1 15- 18 I4 K e_Teff1 [2/1904] Lower uncertainty in Teff1 20- 23 I4 K Teff2 [3016/6881] Stellar effective temperature, component 2 25- 28 I4 K E_Teff2 [5/1799] Upper uncertainty in Teff2 30- 32 I3 K e_Teff2 [7/380] Lower uncertainty in Teff2 34- 37 I4 K Teffkep [2703/6995] Stellar effective temperature, Kepler (1) 39- 41 I3 K e_Teffkep [58/297]? Uncertainty in Teffkep 43- 47 F5.3 Rsun Rstar1 [0.19/1.5] Radius, solar units, component 1 49- 53 F5.3 Rsun E_Rstar1 [0.003/0.3] Upper uncertainty in Rstar1 55- 59 F5.3 Rsun e_Rstar1 [0.003/0.25] Lower uncertainty in Rstar1 61- 65 F5.3 --- Rstar2/Rstar1 [0.3/1.1] Ratio, radii, component 2 to 1 67- 71 F5.3 --- E_Rstar2/Rstar1 [0.002/1] Upper uncertainty in Rstar2/Rstar1 73- 77 F5.3 --- e_Rstar2/Rstar1 [0.002/0.4] Lower uncertainty in Rstar2/Rstar1 79- 83 F5.3 Rsun Rstarkep [0.1/3.4] Radius, solar units, Kepler (1) 85- 89 F5.3 Rsun e_Rstarkep [0.01/1.1]? Uncertainty in Rstarkep 91- 94 F4.2 --- fcorr-p [0.2/2.1]? Planetary radius correction factor, if primary host 96- 99 F4.2 --- E_fcorr-p [0.02/1.2]? Upper uncertainty in fcorr-p 101- 104 F4.2 --- e_fcorr-p [0.02/0.4]? Lower uncertainty in fcorr-p 106- 109 F4.2 --- fcorr-s [0.5/4.4]? Planetary radius correction factor, if secondary host 111- 114 F4.2 --- E_fcorr-s [0.03/1.5]? Upper uncertainty in fcorr-s 116- 119 F4.2 --- e_fcorr-s [0.03/1.1]? Lower uncertainty in fcorr-s 121 I1 --- Source [1/2] Source (1) -------------------------------------------------------------------------------- Note (1): Kepler Teff and Rstar from Berger+ 2018, J/ApJ/866/99 (Source=1) or Mathur+ 2017, J/ApJS/229/30 (Source=2) values for the composite stellar system properties. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 F7.2 --- KOIpl [42.01/8253.01] Kepler object of interest planet identifier 9- 14 F6.2 Rgeo Rppri [0.29/520]? Planet radius, primary as host 16- 20 F5.2 Rgeo E_Rppri [0.03/48]? Upper uncertainty in Rppri 22- 26 F5.2 Rgeo e_Rppri [0.03/48.1]? Lower uncertainty in Rppri 28- 34 F7.2 Rgeo Rpsec [0.37/1447]? Planet radius, secondary as host 36- 41 F6.2 Rgeo E_Rpsec [0.05/130.1]? Upper uncertainty in Rpsec 43- 48 F6.2 Rgeo e_Rpsec [0.04/129]? Lower uncertainty in Rpsec 50- 55 F6.2 Rgeo Rpkep [0.36/577] Planet radius, Kepler (1) 57- 61 F5.2 Rgeo e_Rpkep [0/31] Uncertainty in Rpkep 63- 66 I4 K Teqpri [138/2908]? Planet equilibrium temperature, secondary 68- 70 I3 K E_Teqpri [4/344]? Upper uncertainty in Teqpri 72- 74 I3 K e_Teqpri [4/401]? Lower uncertainty in Teqpri 76- 79 I4 K Teqsec [78/2615]? Planet equilibrium temperature, secondary 81- 83 I3 K E_Teqsec [2/309]? Upper uncertainty in Teqsec 85- 87 I3 K e_Teqsec [2/321]? Lower uncertainty in Teqsec 89- 92 I4 K Teqkep [106/3653] Planet equilibrium temperature, Kepler (1) 94- 101 F8.2 --- Spri [0.05/15155] Isolation, Earth units, primary as host 103- 108 F6.2 --- E_Spri [0/945] Upper uncertainty in Spri 110- 115 F6.2 --- e_Spri [0/938] Lower uncertainty in Spri 117- 123 F7.2 --- Ssec [0.02/9992] Isolation, Earth units, secondary as host 125- 130 F6.2 --- E_Ssec [0/730] Upper uncertainty in Ssec 132- 137 F6.2 --- e_Ssec [0/707] Lower uncertainty in Ssec 139- 146 F8.2 --- Skep [0.03/41864]?=-99 Isolation, Earth units, Kepler (1) 148- 155 F8.2 --- e_Skep [0/29069]?=-99 Uncertainty in Skep 157- 160 I04 --- KOI Host star KOI number; column added by CDS -------------------------------------------------------------------------------- Note (1): Kepler values from Thompson+ 2018, J/ApJS/235/38 -------------------------------------------------------------------------------- History: From electronic version of the journal References: Sullivan et al. Paper I. 2022ApJ...935..141S 2022ApJ...935..141S Sullivan & Kraus Paper II. 2022AJ....164..138S 2022AJ....164..138S Sullivan et al. Paper III. 2023AJ....165..177S 2023AJ....165..177S Cat. J/AJ/165/177
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 12-Mar-2025
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line