J/AcA/68/183 Predicted Microlensing Events for the 21st Century (Bramich+, 2018)

An Almanac of Predicted Microlensing Events for the 21st Century. Bramich D.M., Nielsen M.B. <Acta Astron. 68, 183 (2018)> =2018AcA....68..183B 2018AcA....68..183B (SIMBAD/NED BibCode)
ADC_Keywords: Gravitational lensing ; Positional data ; Stars, nearby Keywords: gravitational lensing: micro - methods: data analysis - catalogs - astrometry - stars: fundamental parameters Abstract: Using Gaia data release 2 (GDR2, Cat. I/345), we present an almanac of 2509 predicted microlensing events, caused by 2130 unique lens stars, that will peak between July 25, 2026 and the end of the century. This work extends and completes a thorough search for future microlensing events initiated by Bramich and Nielsen using GDR2. The almanac includes 161 lenses that will cause at least two microlensing events each. All of the predicted microlensing events in the almanac will exhibit astrometric signals that are detectable by observing facilities with an angular resolution and astrometric precision similar to, or better than, that of the Hubble Space Telescope (e.g., NIRCam on the James Webb Space Telescope), although the events with the most extreme source-to-lens contrast ratios may be challenging. Ground-based telescopes of at least 1 m in diameter can be used to observe many of the events that are also expected to exhibit a photometric signal. Description: Characteristics of 2509 microlensing events. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 770 2509 Characteristics of 2509 microlensing events -------------------------------------------------------------------------------- See also: I/345 : Gaia DR2 (Gaia Collaboration, 2018) J/A+A/618/A44 : Predicted microlensing events from Gaia DR2 (Bramich, 2018) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- Event Event Name 8- 9 A2 --- LensSpType Lens Spectral Type 11- 29 I19 --- LensSource Lens GDR2 ID 31- 44 F14.10 deg RALdeg Lens Right ascension (ICRS, Ep=J2015.5) 46- 50 F5.3 mas e_RALdeg Error on Lens RA (mas) 52- 65 F14.10 deg DELdeg Lens Declination (ICRS, Ep=J2015.5) 67- 71 F5.3 mas e_DELdeg Error on Lens DE (mas) 73- 81 F9.3 mas/yr LenspmRA Lens Proper Motion along RA, pmRA*cosDE 83- 87 F5.3 mas/yr e_LenspmRA Error on Lens Proper Motion RA 89- 97 F9.3 mas/yr LenspmDE Lens Proper Motion along DE 99-103 F5.3 mas/yr e_LenspmDE Error on Lens Proper Motion DE 105-111 F7.3 mas Lensplx Lens Parallax 113-117 F5.3 mas e_Lensplx Error on Lens Parallax 119-125 F7.4 mag LensGmag Lens G Mean Magnitude 127-132 F6.4 mag e_LensGmag Error on Lens G Mean Magnitude 134-140 F7.4 mag LensBPmag Lens G_BP Mean Magnitude 142-147 F6.4 mag e_LensBPmag Error on Lens G_BP Mean Magnitude 149-155 F7.4 mag LensRPmag Lens G_RP Mean Magnitude 157-162 F6.4 mag e_LensRPmag Error on Lens G_RP Mean Magnitude 164-167 F4.2 Msun LensMass Lens Mass 169-187 I19 --- Source Source Gaia DR2 ID 189-202 F14.10 deg RAdeg Source Right ascension (ICRS, Ep=J2015.5) 204-209 F6.3 mas e_RAdeg Error on Source RA 211-224 F14.10 deg DEdeg Source Declination (ICRS, Ep=2015.5) 226-231 F6.3 mas e_DEdeg Error on Source DE 233-239 F7.3 mas/yr pmRA ? Source Proper Motion along RA 241-245 F5.3 mas/yr e_pmRA ? Error on Source Proper Motion RA 247-254 F8.3 mas/yr pmDE ? Source Proper Motion along DE 256-260 F5.3 mas/yr e_pmDE ? Error on Source Proper Motion DE 262-267 F6.3 mas plx ? Source Parallax 269-273 F5.3 mas e_plx ? Error On Source Parallax 275-281 F7.4 mag Gmag Source G Mean Magnitude 283-288 F6.4 mag e_Gmag Error On Source G Mean Magnitude 290-296 F7.4 mag BPmag ? Source G_BP Mean Magnitude 298-303 F6.4 mag e_BPmag ? Error On Source G_BP Mean Magnitude 305-311 F7.4 mag RPmag ? Source G_RP Mean Magnitude 313-318 F6.4 mag e_RPmag ? Error On Source G_RP Mean Magnitude 320-325 F6.3 mas e1_thetaE 2.3 Percentile theta_E 327-332 F6.3 mas e2_thetaE 15.9 Percentile theta_E 334-339 F6.3 mas thetaE Median theta_E 341-346 F6.3 mas e3_thetaE 84.1 Percentile theta_E 348-353 F6.3 mas e4_thetaE 97.7 Percentile theta_E 355-360 F6.2 --- e1_u0t 2.3 Percentile u_0 (u0t) 362-367 F6.2 --- e2_u0t 15.9 Percentile u_0 (u0t) 369-374 F6.2 --- u0t Median angular distance on the sky u_0 (u0t) 376-381 F6.2 --- e3_u0t 84.1 Percentile u_0 (u0t) 383-388 F6.2 --- e4_u0t 97.7 Percentile u_0 (u0t) 390-394 F5.3 --- P(u0<1) Probability that the event will have u0<1 396-400 F5.3 --- P(u0<2) Probability that the event will have u0<2 402-406 F5.3 --- P(u0<5) Probability that the event will have u0<5 408-412 F5.3 --- P(u0<10) Probability that the event will have u0<10 414-420 F7.2 mas e1_thetaE*u0 2.3 Percentile thetaE*u0 422-428 F7.2 mas e2_thetaE*u0 15.9 Percentile thetaE*u0 430-436 F7.2 mas thetaE*u0 Median thetaE*u0 438-444 F7.2 mas e3_thetaE*u0 84.1 Percentile thetaE*u0 446-452 F7.2 mas e4_thetaE*u0 97.7 Percentile thetaE*u0 454-458 F5.3 --- P(thetaE*u0<100) Probability that the event will have thetaE*u0<100mas 460-464 F5.3 --- P(thetaE*u0<200) Probability that the event will have thetaE*u0<200mas 466-470 F5.3 --- P(thetaE*u0<500) Probability that the event will have thetaE*u0<500mas 472-476 F5.3 --- P(thetaE*u0<1000) Probability that the event will have thetaE*u0<1000mas 478-487 F10.5 yr e1_t0 2.3 Percentile t0 (Julian year) 489-498 F10.5 yr e2_t0 15.9 Percentile t0 (Julian year) 500-509 F10.5 yr t0 Median t0 (Julian year) 511-520 F10.5 yr e3_t0 84.1 Percentile t0 (Julian year) 522-531 F10.5 yr e4_t0 97.7 Percentile t0 (Julian year) 533-538 F6.4 mag e1_dAA1 2.3 Percentile {DELTA}(A,A1) 540-545 F6.4 mag e2_dAA1 15.9 Percentile {DELTA}(A,A1) 547-552 F6.4 mag dAA1 Median difference between the minimum and maximum magnifications of an event over the time period adopted in this paper {DELTA}(A,A1) 554-559 F6.4 mag e3_dAA1 84.1 Percentile {DELTA}(A,A1)] 561-566 F6.4 mag e4_dAA1 97.7 Percentile {DELTA}(A,A1)] 568-574 F7.2 d e1_TdAA1 2.3 Percentile T[{DELTA}(A,A1)] 576-582 F7.2 d e2_TdAA1 15.9 Percentile T[{DELTA}(A,A1)] 584-590 F7.2 d TdAA1 Median amount of time that an event spends with its magnification above min{A,A1}+{DELTA}(A,A1)/2, T[{DELTA}(A,A_1)] 592-598 F7.2 d e3_TdAA1 84.1 Percentile T[{DELTA}(A,A1)] 600-606 F7.2 d e4_TdAA1 97.7 Percentile T[{DELTA}(A,A1)] 608-612 F5.3 --- P(dAA1>0.4) Probability that the event will have {DELTA}(A,A1)>0.4mmag 614-619 F6.4 mag e1_dALI2 2.3 Percentile {DELTA}ALI2 621-626 F6.4 mag e2_dALI2 15.9 Percentile {DELTA}ALI2 628-633 F6.4 mag dALI2 Median {DELTA}ALI2 635-640 F6.4 mag e3_dALI2 84.1 Percentile {DELTA}ALI2 642-647 F6.4 mag e4_dALI2 97.7 Percentile {DELTA}ALI2 649-653 F5.3 --- P(dALI2>0.4) Probability that the event will have {DELTA}ALI2>0.4mmag 655-659 F5.3 mas e1_dmth2 2.3 Percentile {DELTA}(δmic2) 661-665 F5.3 mas e2_dmth2 15.9 Percentile {DELTA}(δmic2) 667-671 F5.3 mas dmth2 Median difference between the minimum and maximum astrometric shifts of an event over the time period adopted in this paper {DELTA}(δmic2) 673-677 F5.3 mas e3_dmth2 84.1 Percentile {DELTA}(δmic2) 679-683 F5.3 mas e4_dmth2 97.7 Percentile {DELTA}(δmic2) 685-692 F8.2 d e1_Tdmth2 2.3 Percentile T[{DELTA}(δmic2)] 694-701 F8.2 d e2_Tdmth2 15.9 Percentile T[{DELTA}(δmic2)] 703-710 F8.2 d Tdmth2 Median amount of time that an event spends with its astrometric shift above min(δmic2)+ {DELTA}(δmic2)/2, T[{DELTA}(δmic2)] 712-719 F8.2 d e3_Tdmth2 84.1 Percentile T[{DELTA}(δmic2)] 721-728 F8.2 d e4_Tdmth2 97.7 Percentile T[{DELTA}(δmic2)] 730-734 F5.3 --- P(dmth2>0.131) Probability that the event will have {DELTA}(δmic2) >0.131mas 736-740 F5.3 mas e1_dthLI2 2.3 Percentile {DELTA}thetaLI2 742-746 F5.3 mas e2_dthLI2 15.9 Percentile {DELTA}thetaLI2 748-752 F5.3 mas dthLI2 Median {DELTA}thetaLI2 754-758 F5.3 mas e3_dthLI2 84.1 Percentile {DELTA}thetaLI2 760-764 F5.3 mas e4_dthLI2 97.7 Percentile {DELTA}thetaLI2 766-770 F5.3 --- P(dthLI2>0.131) Probability that the event will have {DELTA}thetaLI2>0.131mas -------------------------------------------------------------------------------- Acknowledgements: Dan Bramich, dan.bramich(at)hotmail.co.uk
(End) Dan Bramich [NYUAD, UAE], Patricia Vannier [CDS] 06-Dec-2018
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line