J/AcA/68/183 Predicted Microlensing Events for the 21st Century (Bramich+, 2018)
An Almanac of Predicted Microlensing Events for the 21st Century.
Bramich D.M., Nielsen M.B.
<Acta Astron. 68, 183 (2018)>
=2018AcA....68..183B 2018AcA....68..183B (SIMBAD/NED BibCode)
ADC_Keywords: Gravitational lensing ; Positional data ; Stars, nearby
Keywords: gravitational lensing: micro - methods: data analysis -
catalogs - astrometry - stars: fundamental parameters
Abstract:
Using Gaia data release 2 (GDR2, Cat. I/345), we present an almanac of
2509 predicted microlensing events, caused by 2130 unique lens stars,
that will peak between July 25, 2026 and the end of the century. This
work extends and completes a thorough search for future microlensing
events initiated by Bramich and Nielsen using GDR2. The almanac
includes 161 lenses that will cause at least two microlensing events
each. All of the predicted microlensing events in the almanac will
exhibit astrometric signals that are detectable by observing
facilities with an angular resolution and astrometric precision
similar to, or better than, that of the Hubble Space Telescope (e.g.,
NIRCam on the James Webb Space Telescope), although the events with
the most extreme source-to-lens contrast ratios may be challenging.
Ground-based telescopes of at least 1 m in diameter can be used to
observe many of the events that are also expected to exhibit a
photometric signal.
Description:
Characteristics of 2509 microlensing events.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 770 2509 Characteristics of 2509 microlensing events
--------------------------------------------------------------------------------
See also:
I/345 : Gaia DR2 (Gaia Collaboration, 2018)
J/A+A/618/A44 : Predicted microlensing events from Gaia DR2 (Bramich, 2018)
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 A6 --- Event Event Name
8- 9 A2 --- LensSpType Lens Spectral Type
11- 29 I19 --- LensSource Lens GDR2 ID
31- 44 F14.10 deg RALdeg Lens Right ascension (ICRS, Ep=J2015.5)
46- 50 F5.3 mas e_RALdeg Error on Lens RA (mas)
52- 65 F14.10 deg DELdeg Lens Declination (ICRS, Ep=J2015.5)
67- 71 F5.3 mas e_DELdeg Error on Lens DE (mas)
73- 81 F9.3 mas/yr LenspmRA Lens Proper Motion along RA, pmRA*cosDE
83- 87 F5.3 mas/yr e_LenspmRA Error on Lens Proper Motion RA
89- 97 F9.3 mas/yr LenspmDE Lens Proper Motion along DE
99-103 F5.3 mas/yr e_LenspmDE Error on Lens Proper Motion DE
105-111 F7.3 mas Lensplx Lens Parallax
113-117 F5.3 mas e_Lensplx Error on Lens Parallax
119-125 F7.4 mag LensGmag Lens G Mean Magnitude
127-132 F6.4 mag e_LensGmag Error on Lens G Mean Magnitude
134-140 F7.4 mag LensBPmag Lens G_BP Mean Magnitude
142-147 F6.4 mag e_LensBPmag Error on Lens G_BP Mean Magnitude
149-155 F7.4 mag LensRPmag Lens G_RP Mean Magnitude
157-162 F6.4 mag e_LensRPmag Error on Lens G_RP Mean Magnitude
164-167 F4.2 Msun LensMass Lens Mass
169-187 I19 --- Source Source Gaia DR2 ID
189-202 F14.10 deg RAdeg Source Right ascension
(ICRS, Ep=J2015.5)
204-209 F6.3 mas e_RAdeg Error on Source RA
211-224 F14.10 deg DEdeg Source Declination (ICRS, Ep=2015.5)
226-231 F6.3 mas e_DEdeg Error on Source DE
233-239 F7.3 mas/yr pmRA ? Source Proper Motion along RA
241-245 F5.3 mas/yr e_pmRA ? Error on Source Proper Motion RA
247-254 F8.3 mas/yr pmDE ? Source Proper Motion along DE
256-260 F5.3 mas/yr e_pmDE ? Error on Source Proper Motion DE
262-267 F6.3 mas plx ? Source Parallax
269-273 F5.3 mas e_plx ? Error On Source Parallax
275-281 F7.4 mag Gmag Source G Mean Magnitude
283-288 F6.4 mag e_Gmag Error On Source G Mean Magnitude
290-296 F7.4 mag BPmag ? Source G_BP Mean Magnitude
298-303 F6.4 mag e_BPmag ? Error On Source G_BP Mean Magnitude
305-311 F7.4 mag RPmag ? Source G_RP Mean Magnitude
313-318 F6.4 mag e_RPmag ? Error On Source G_RP Mean Magnitude
320-325 F6.3 mas e1_thetaE 2.3 Percentile theta_E
327-332 F6.3 mas e2_thetaE 15.9 Percentile theta_E
334-339 F6.3 mas thetaE Median theta_E
341-346 F6.3 mas e3_thetaE 84.1 Percentile theta_E
348-353 F6.3 mas e4_thetaE 97.7 Percentile theta_E
355-360 F6.2 --- e1_u0t 2.3 Percentile u_0 (u0t)
362-367 F6.2 --- e2_u0t 15.9 Percentile u_0 (u0t)
369-374 F6.2 --- u0t Median angular distance on the sky u_0
(u0t)
376-381 F6.2 --- e3_u0t 84.1 Percentile u_0 (u0t)
383-388 F6.2 --- e4_u0t 97.7 Percentile u_0 (u0t)
390-394 F5.3 --- P(u0<1) Probability that the event will have
u0<1
396-400 F5.3 --- P(u0<2) Probability that the event will have
u0<2
402-406 F5.3 --- P(u0<5) Probability that the event will have
u0<5
408-412 F5.3 --- P(u0<10) Probability that the event will have
u0<10
414-420 F7.2 mas e1_thetaE*u0 2.3 Percentile thetaE*u0
422-428 F7.2 mas e2_thetaE*u0 15.9 Percentile thetaE*u0
430-436 F7.2 mas thetaE*u0 Median thetaE*u0
438-444 F7.2 mas e3_thetaE*u0 84.1 Percentile thetaE*u0
446-452 F7.2 mas e4_thetaE*u0 97.7 Percentile thetaE*u0
454-458 F5.3 --- P(thetaE*u0<100) Probability that the event will have
thetaE*u0<100mas
460-464 F5.3 --- P(thetaE*u0<200) Probability that the event will have
thetaE*u0<200mas
466-470 F5.3 --- P(thetaE*u0<500) Probability that the event will have
thetaE*u0<500mas
472-476 F5.3 --- P(thetaE*u0<1000) Probability that the event will have
thetaE*u0<1000mas
478-487 F10.5 yr e1_t0 2.3 Percentile t0 (Julian year)
489-498 F10.5 yr e2_t0 15.9 Percentile t0 (Julian year)
500-509 F10.5 yr t0 Median t0 (Julian year)
511-520 F10.5 yr e3_t0 84.1 Percentile t0 (Julian year)
522-531 F10.5 yr e4_t0 97.7 Percentile t0 (Julian year)
533-538 F6.4 mag e1_dAA1 2.3 Percentile {DELTA}(A,A1)
540-545 F6.4 mag e2_dAA1 15.9 Percentile {DELTA}(A,A1)
547-552 F6.4 mag dAA1 Median difference between the minimum
and maximum magnifications of an event
over the time period adopted in
this paper {DELTA}(A,A1)
554-559 F6.4 mag e3_dAA1 84.1 Percentile {DELTA}(A,A1)]
561-566 F6.4 mag e4_dAA1 97.7 Percentile {DELTA}(A,A1)]
568-574 F7.2 d e1_TdAA1 2.3 Percentile T[{DELTA}(A,A1)]
576-582 F7.2 d e2_TdAA1 15.9 Percentile T[{DELTA}(A,A1)]
584-590 F7.2 d TdAA1 Median amount of time that an event
spends with its magnification above
min{A,A1}+{DELTA}(A,A1)/2,
T[{DELTA}(A,A_1)]
592-598 F7.2 d e3_TdAA1 84.1 Percentile T[{DELTA}(A,A1)]
600-606 F7.2 d e4_TdAA1 97.7 Percentile T[{DELTA}(A,A1)]
608-612 F5.3 --- P(dAA1>0.4) Probability that the event will have
{DELTA}(A,A1)>0.4mmag
614-619 F6.4 mag e1_dALI2 2.3 Percentile {DELTA}ALI2
621-626 F6.4 mag e2_dALI2 15.9 Percentile {DELTA}ALI2
628-633 F6.4 mag dALI2 Median {DELTA}ALI2
635-640 F6.4 mag e3_dALI2 84.1 Percentile {DELTA}ALI2
642-647 F6.4 mag e4_dALI2 97.7 Percentile {DELTA}ALI2
649-653 F5.3 --- P(dALI2>0.4) Probability that the event will have
{DELTA}ALI2>0.4mmag
655-659 F5.3 mas e1_dmth2 2.3 Percentile
{DELTA}(δmic,θ2)
661-665 F5.3 mas e2_dmth2 15.9 Percentile
{DELTA}(δmic,θ2)
667-671 F5.3 mas dmth2 Median difference between the minimum
and maximum astrometric shifts of an
event over the time period adopted in
this paper
{DELTA}(δmic,θ2)
673-677 F5.3 mas e3_dmth2 84.1 Percentile
{DELTA}(δmic,θ2)
679-683 F5.3 mas e4_dmth2 97.7 Percentile
{DELTA}(δmic,θ2)
685-692 F8.2 d e1_Tdmth2 2.3 Percentile
T[{DELTA}(δmic,θ2)]
694-701 F8.2 d e2_Tdmth2 15.9 Percentile
T[{DELTA}(δmic,θ2)]
703-710 F8.2 d Tdmth2 Median amount of time that an event
spends with its astrometric shift
above min(δmic,θ2)+
{DELTA}(δmic,θ2)/2,
T[{DELTA}(δmic,θ2)]
712-719 F8.2 d e3_Tdmth2 84.1 Percentile
T[{DELTA}(δmic,θ2)]
721-728 F8.2 d e4_Tdmth2 97.7 Percentile
T[{DELTA}(δmic,θ2)]
730-734 F5.3 --- P(dmth2>0.131) Probability that the event will have
{DELTA}(δmic,θ2)
>0.131mas
736-740 F5.3 mas e1_dthLI2 2.3 Percentile {DELTA}thetaLI2
742-746 F5.3 mas e2_dthLI2 15.9 Percentile {DELTA}thetaLI2
748-752 F5.3 mas dthLI2 Median {DELTA}thetaLI2
754-758 F5.3 mas e3_dthLI2 84.1 Percentile {DELTA}thetaLI2
760-764 F5.3 mas e4_dthLI2 97.7 Percentile {DELTA}thetaLI2
766-770 F5.3 --- P(dthLI2>0.131) Probability that the event will have
{DELTA}thetaLI2>0.131mas
--------------------------------------------------------------------------------
Acknowledgements:
Dan Bramich, dan.bramich(at)hotmail.co.uk
(End) Dan Bramich [NYUAD, UAE], Patricia Vannier [CDS] 06-Dec-2018