J/ApJ/652/681 Spectroscopic subcomponents in multiple systems (Docobo+, 2006)
A methodology for the description of multiple stellar systems with
spectroscopic subcomponents.
Docobo J.A., Andrade M.
<Astrophys. J., 652, 681-695 (2006)>
=2006ApJ...652..681D 2006ApJ...652..681D
ADC_Keywords: Stars, double and multiple ; Binaries, spectroscopic ;
Stars, masses ; Magnitudes ; Stars, diameters
Keywords: binaries: close - binaries: eclipsing - binaries: spectroscopic -
binaries: visual - methods: data analysis - methods: statistical -
stars: fundamental parameters
Abstract:
We propose a methodology for analyzing triple stellar systems that
include a visual double star wherein one of the components is a
single- or double-lined spectroscopic binary. By using this
methodology, we can calculate the most probable values of the
spectroscopic binary's inclination, the angular separation between its
components, and its stellar masses, and we can even estimate the
spectral types. For a few W UMa-type eclipsing binaries, stellar radii
are also determined. Moreover, we present new formulae for calculating
stellar masses depending on spectral type. In this way we have studied
61 triple systems, five of them W UMatype eclipsing binaries with
low-mass subcomponents. In addition, we study nine quadruple systems,
applying the same methodology and considering them twice as a triple
system.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 175 62 Summary of Derived Quantities for Triple Systems
table4.dat 258 9 Summary of Derived Quantities for Quadruple Systems
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- WDS WDS name (HHMMm+DDMM)
12 I1 --- m_WDS [1/2]? Multiplicity index on WDS
13 A1 --- n_Name [±] Binary characteristics (1)
15- 32 A18 --- Name Name of the (sub)systems
34 I1 --- Grade [1/5] Grade of visual orbit according to
Hartkopf et al. (2001AJ....122.3472H 2001AJ....122.3472H)
36 I1 --- Qual [1/5] Quality of results according to the
two-dimensional parameter (G3)
38- 41 F4.1 solMass M1 Mass of the primary
43- 45 F3.1 solMass e_M1 rms uncertainty on M1
47- 50 F4.1 solMass M2 Mass of the secondary
52- 54 F3.1 solMass e_M2 rms uncertainty on M2
56- 58 F3.1 solMass M3 Mass of the tertiary
60- 62 F3.1 solMass e_M3 rms uncertainty on M3
64- 69 A6 --- SpT1 MK spectral type of the primary
71- 76 A6 --- SpT2 MK spectral type of the secondary
78- 83 A6 --- SpT3 MK spectral type of the tertiary
85 I1 --- SB [1/2] SB type (SB1 or SB2)
87- 90 F4.1 mag m1 Apparent visual magnitude of the primary
92- 94 F3.1 mag e_m1 rms uncertainty on m1
96- 99 F4.1 mag m2 Apparent visual magnitude of the secondary
101-103 F3.1 mag e_m2 rms uncertainty on m2
105-111 F7.3 mas a12 Semi-major axis for the spectroscopic
subsystem
112-117 F6.3 mas e_a12 rms uncertainty on a12
119-125 F7.3 mas rho Maximum angular separation
126-131 F6.3 mas e_rho rms uncertainty on rhomax
132 A1 --- n_rho [*] *: spectroscopic circular orbit
134-139 F6.2 mas plx HIPPARCOS parallax
140-144 F5.2 mas e_plx rms uncertainty on plx
146-150 F5.1 mas plxi New parallax (G1)
152-154 F3.1 mas e_plxi rms uncertainty on plxi
156-160 F5.1 mas plxf New parallax (G2)
161-164 F4.1 mas e_plxf rms uncertainty on plxf
166-170 F5.1 deg i12 Spectroscopic binary inclination
(or 180°-i12)
172-175 F4.1 deg e_i12 rms uncertainty on a12
--------------------------------------------------------------------------------
Note (1): Notes as follows:
+ = this binary has both spectroscopic and visual orbits
- = the spectroscopic binary is a W UMa-type binary
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- WDS WDS name (HHMMm+DDMM)
13 A1 --- n_Name [±] Note on Name (1)
15- 17 F3.1 solMass M1 Mass of the primary
19- 21 F3.1 solMass e_M1 rms uncertainty on M1
23- 27 A5 --- SpT1 MK spectral type of the primary
29- 31 F3.1 mag m1 Apparent visual magnitude of the primary
33- 35 F3.1 mag e_m1 rms uncertainty on m1
37- 42 F6.2 mas plx HIPPARCOS parallax
44- 47 F4.2 mas e_plx rms uncertainty on plx
48 A1 --- n_plx [a] Note on plx for WDS 18002+8000 (2)
50- 72 A23 --- Name Name
74- 76 F3.1 solMass M2 Mass of the secondary
78- 80 F3.1 solMass e_M2 rms uncertainty on M2
82- 86 A5 --- SpT2 MK spectral type of the secondary
88- 90 F3.1 mag m2 Apparent visual magnitude of the secondary
92- 94 F3.1 mag e_m2 rms uncertainty on m2
96-100 F5.1 mas plxAi New parallax for A system (G1)
102-104 F3.1 mas e_plxAi rms uncertainty on plxAi
106 I1 --- GradeA [1/5]? Grade of visual orbit for A system
according to Hartkopf et al.
(2001AJ....122.3472H 2001AJ....122.3472H)
108-110 F3.1 solMass M3 Mass of the tertiary
112-114 F3.1 solMass e_M3 rms uncertainty on M3
116-119 A4 --- SpT3 MK spectral type of the tertiary
121-123 F3.1 mag m3 Apparent visual magnitude of the tertiary
125-127 F3.1 mag e_m3 rms uncertainty on m3
129-133 F5.1 mas plxBi New parallax for B system (G1)
135-137 F3.1 mas e_plxBi rms uncertainty on plxi
139 I1 --- GradeB [1/5]? Grade of visual orbit for B system
according to Hartkopf et al.
(2001AJ....122.3472H 2001AJ....122.3472H)
141-143 F3.1 solMass M4 Mass of the component 4
145-147 F3.1 solMass e_M4 rms uncertainty on M4
149-152 A4 --- SpT4 MK spectral type of the component 4
154-157 F4.1 mag m4 Apparent visual magnitude of the component 4
159-161 F3.1 mag e_m4 rms uncertainty on m4
163-167 F5.1 mas plxf New parallax (G2)
169-171 F3.1 mas e_plxf rms uncertainty on plxf
173 I1 --- QualA [1/5] Quality of results according to the
A system two-dimensional parameter (G3)
175 I1 --- SBA [1/2] SB type (SB1 or SB2)
177-183 F7.3 mas aA12 Semi-major axis for A system
185-190 F6.3 mas e_aA12 rms uncertainty on a12
192-198 F7.3 mas rhoA Maximum angular separation for A system
200-205 F6.3 mas e_rhoA rms uncertainty on rhomax
206 A1 --- n_rhoA [*] *: spectroscopic circular orbit
208-211 F4.1 deg iA12 Spectroscopic binary A inclination
(or 180°-i12).
213-216 F4.1 deg e_iA12 rms uncertainty on a12
218 I1 --- QualB [1/5] Quality of results according to the
B system two-dimensional parameter (G3)
220 I1 --- SBB [1/2] SB type (SB1 or SB2)
222-227 F6.3 mas aB12 Semi-major axis pour pair primary-secondary
228-233 F6.3 mas e_aB12 rms uncertainty on a12
234-240 F7.3 mas rhoB Maximum angular separation for B system
242-247 F6.3 mas e_rhoB rms uncertainty on rhomax
248 A1 --- n_rhoB [*] *: spectroscopic circular orbit
250-253 F4.1 deg iB12 Spectroscopic binary B inclination
(or 180°-i12).
255-258 F4.1 deg e_iB12 rms uncertainty on a12
--------------------------------------------------------------------------------
Note (1): Note as follows:
+ = the Bab, Bc, A subsystem in Bu 1099 AB also have visual orbits
the Aa, Ab, B subsystem in STF 1523 AB also have visual orbits
the Aa, Ab, B subsystem in STF 2308 AB also have visual orbits
- = the Ba, Bb, A subsystem in STF 1781 AB is a W UMatype SB
Note (2): Note as follows:
the Ba, Bb subcomponent has plx(HIP)=19.64±3.80mas
--------------------------------------------------------------------------------
Global notes:
Note (G1): Parallax calculated as
log(plxi)=(M1-m12-5)/5 - 0.5*log(1+10-0.4DM)
where M1 is the absolute magnitude of the primary, DM=M1-M2 and m12
is combined apparent magnitude of each component of the visual pair
(primary+secondary)
Note (G2): Parallax calculated as
plxf=aP-2/3[{sum j=1 to n }{Mj)]-1/3
where a and P are the semimajor axis and the period of the visual
orbit, respectively, Mj is the j-component mass calculated at the end
of the process, and n is 3 (triple system) or 4 (quadruple system).
Note (G3): We have classified the systems in five quality grading boxes
according to the distance to the (1,1)-point. This allows us
to grade the results as follows:
1 = Very good Box1 {(0.95, 0.95)<ρsystem<(1.05, 1.05)}
2 = Good Box2 {(0.90, 0.90)<ρsystem<(1.10, 1.10)}-Box1
3 = Reliable Box3 {(0.85, 0.85)<ρsystem<(1.15, 1.15)}-Box2
4 = Preliminary Box4 {(0.80, 0.80)<ρsystem<(1.20, 1.20)}-Box3
5 = Indeterminate Box5 {ρsystem > (1.20, 1.20)}
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 25-Jul-2008