J/ApJ/766/88   Chandra observations of X-ray binaries in Cen A   (Burke+, 2013)

Spectral properties of X-ray binaries in Centaurus A. Burke M.J., Raychaudhury S., Kraft R.P., Maccarone T.J., Brassington N.J., Hardcastle M.J., Kainulainen J., Woodley K.A., Goodger J.L., Sivakoff G.R., Forman W.R., Jones C., Murray S.S., Birkinshaw M., Croston J.H., Evans D.A., Gilfanov M., Jordan A., Sarazin C.L., Voss R., Worrall D.M., Zhang Z. <Astrophys. J., 766, 88 (2013)> =2013ApJ...766...88B 2013ApJ...766...88B
ADC_Keywords: Binaries, X-ray ; Galaxies, nearby Keywords: black hole physics; galaxies: elliptical and lenticular, cD; galaxies: individual (Centaurus A, NGC 5128); X-rays: binaries; X-rays: galaxies Abstract: We present a spectral investigation of X-ray binaries (XBs) in NGC 5128 (Cen A), using six 100ks Chandra observations taken over two months in 2007. We divide our sample into thermally and non-thermally dominated states based on the behavior of the fitted absorption column NH, and present the spectral parameters of sources with Lx≳2x1037erg/s. The majority of sources are consistent with being neutron star low-mass X-ray binaries (NS LMXBs) and we identify three transient black hole (BH) LMXB candidates coincident with the dust lane, which is the remnant of a small late-type galaxy. Our results also provide tentative support for the apparent "gap" in the mass distribution of compact objects between ∼2-5M. We propose that BH LMXBs are preferentially found in the dust lane, and suggest this is because of the younger stellar population. The majority (∼70%-80%) of potential Roche lobe filling donors in the Cen A halo are ≳12Gyr old, while BH LMXBs require donors ≳1M to produce the observed peak luminosities. This requirement for more massive donors may also explain recent results that claim a steepening of the X-ray luminosity function with age at Lx≥5x1038erg/s for the XB population of early-type galaxies; for older stellar populations, there are fewer stars ≳1M, which are required to form the more luminous sources. Description: Six 100ks Chandra observations (ObsID 7797, 7798, 7799, 7800, 8449 and 8490) of NGC 5128 were taken as part of the Cen A Very Large Project (VLP) spanning the course of two months in 2007 (Jordan et al. 2007ApJ...671L.117J 2007ApJ...671L.117J). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 178 61 Basic Source Properties table2.dat 201 53 Cen A Sources: Spectral fitting and State Identification table3.dat 80 41 Spectral fits using inferred dominant model (0.5-8.0keV) -------------------------------------------------------------------------------- See also: B/chandra : The Chandra Archive Log (CXC, 1999-2014) J/AJ/143/84 : New candidate globular clusters in NGC 5128 (Harris+, 2012) J/A+A/533/A33 : LMXBs detected in nearby galaxies (Zhang+, 2011) J/ApJS/192/10 : Chandra ACIS survey in 383 nearby galaxies. I. (Liu, 2011) J/MNRAS/401/1965 : Globular clusters in M104 (Harris+, 2010) J/ApJ/682/199 : Globulars with X-ray sources in NGC 5128 (Woodley+, 2008) J/ApJ/654/186 : VI photometry of Cepheids in NGC 5128 (Ferrarese+, 2007) J/A+A/447/71 : CHANDRA X-ray point sources in Cen A (NGC 5128) (Voss+, 2006) J/ApJ/602/231 : Chandra X-ray point sources in nearby galaxies (Colbert+, 2004) J/ApJ/600/716 : NGC 5128 Chandra X-ray point sources (Minniti+, 2004) J/ApJ/560/675 : Chandra X-ray point sources in Cen A (Kraft+, 2001) http://cxc.harvard.edu/ : Chandra X-Ray Observatory (CXC) home page Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- ID Source identifier (S1 to S61) 5- 6 I2 h RAh [13] Hour of Right Ascension (J2000) 8- 9 I2 min RAm [25] Minute of Right Ascension (J2000) 11- 15 F5.2 s RAs Second of Right Ascension (J2000) 17 A1 --- DE- [-] Sign of the Declination (J2000) 18- 19 I2 deg DEd [42/43] Degree of Declination (J2000) 21- 22 I2 arcmin DEm Arcminute of Declination (J2000) 24- 27 F4.1 arcsec DEs Arcsecond of Declination (J2000) 29- 32 I4 ct C7797 ? Net 0.5-8 keV counts in ObsID 7797 34- 36 I3 ct e_C7797 ? Lower uncertainty limit on C7797 38- 40 I3 ct E_C7797 ? Upper uncertainty limit on C7797 42- 44 A3 --- f_C7797 Flag on C7797 (1) 46- 49 I4 ct C7798 ? Net 0.5-8 keV counts in ObsID 7798 51- 53 I3 ct e_C7798 ? Lower uncertainty limit on C7798 55- 57 I3 ct E_C7798 ? Upper uncertainty limit on C7798 59- 61 A3 --- f_C7798 Flag on C7798 (1) 63- 66 I4 ct C7799 ? Net 0.5-8 keV counts in ObsID 7799 68- 70 I3 ct e_C7799 ? Lower uncertainty limit on C7799 72- 74 I3 ct E_C7799 ? Upper uncertainty limit on C7799 76- 78 A3 --- f_C7799 Flag on C7799 (1) 80- 83 I4 ct C7800 ? Net 0.5-8 keV counts in ObsID 7800 85- 87 I3 ct e_C7800 ? Lower uncertainty limit on C7800 89- 91 I3 ct E_C7800 ? Upper uncertainty limit on C7800 93- 94 A2 --- f_C7800 Flag on C7800 (1) 96- 99 I4 ct C8449 Net 0.5-8 keV counts in ObsID 8449 101-103 I3 ct e_C8449 ? Lower uncertainty limit on C8449 105-107 I3 ct E_C8449 ? Upper uncertainty limit on C8449 109-110 A2 --- f_C8449 Flag on C8449 (1) 112-115 I4 ct C8490 Net 0.5-8 keV counts in ObsID 8490 117-119 I3 ct e_C8490 Lower uncertainty limit on C8490 121-123 I3 ct E_C8490 Upper uncertainty limit on C8490 125-126 I2 --- G-Lm Intra-observational variability (G-Lmax) 128-137 A10 --- Type Source classification (2) 140 A1 --- n_ID Additional flag (1) 142-178 A37 --- Note Additional notes (GC coincident numbers from Woodley+, 2008, J/ApJ/682/199) -------------------------------------------------------------------------------- Note (1): Note as follows: N = Within 20" of the Cen A nucleus; R = Source is coincident with read-out streak; C = Source is coincident with chip-edge; FoV = Source is outside of the field-of-view; SC = Source confused; GC = Coincident with globular cluster; D = Coincident with dust lane; NA = Not applicable. Note (2): Classification as follows: AGN = active galactic nucleus BHC = black hole candidate NSC = neutron star candidate FG = foreground star P = persistent T- = transient β NSC = S48 as a highly-magnetised neutron star candidate (β) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- ID Source identifier 5- 33 A29 --- ObsID Observation identifier(s) 35- 38 F4.2 10+22/cm2 NHPO Hydrogen column density of absorbed power law model 41- 44 F4.2 10+22/cm2 e_NHPO Lower limit uncertainty in NHPO (1) 46- 49 F4.2 10+22/cm2 E_NHPO Upper limit uncertainty in NHPO (1) 51- 54 F4.2 --- SpIPO Spectral index of absorbed power law model ΓPO 56- 59 F4.2 --- e_SpIPO Lower limit uncertainty in SpIPO (1) 61- 64 F4.2 --- E_SpIPO Upper limit uncertainty in SpIPO (1) 66- 71 F6.2 10+30W LxPO1 Minimal absorbed power law model 0.5-10keV luminosity (in 1037erg/s) 73- 78 F6.2 10+30W e_LxPO1 Lower limit uncertainty in LxPO1 (1) 80- 85 F6.2 10+30W E_LxPO1 Upper limit uncertainty in LxPO1 (1) 87- 92 F6.2 10+30W LxPO2 ? Maximal absorbed power law model 0.5-10 keV luminosity (in 1037erg/s) 94- 98 F5.2 10+30W e_LxPO2 ? Lower limit uncertainty in LxPO2 (1) 100-105 F6.2 10+30W E_LxPO2 ? Upper limit uncertainty in LxPO2 (1) 107-111 F5.1 --- chi2PO The χ2 of the PO fit 113-115 I3 --- DoFPO Degrees of freedom of power law fit 117-120 F4.2 10+22/cm2 NHDBB ? Hydrogen column density of disk blackbody model (2) 123-126 F4.2 10+22/cm2 e_NHDBB ? Lower limit uncertainty in NHDBB (1) 128-131 F4.2 10+22/cm2 E_NHDBB ? Upper limit uncertainty in NHDBB (1) 133-136 F4.2 keV kTDBB ? Temperature of disk blackbody model (2) 138-141 F4.2 keV e_kTDBB ? Lower limit uncertainty in kTDBB (1) 143-146 F4.2 keV E_kTDBB ? Upper limit uncertainty in kTDBB (1) 148-152 F5.2 10+30W LxDBB1 ? Minimal disk blackbody model 0.5-10 keV luminosity (in 1037erg/s) (2) 154-157 F4.2 10+30W e_LxDBB1 ? Lower limit uncertainty in LxDBB1 (1) 159-162 F4.2 10+30W E_LxDBB1 ? Upper limit uncertainty in LxDBB1 (1) 164-168 F5.2 10+30W LxDBB2 ? Maximal disk blackbody model 0.5-10 keV luminosity (in 1037erg/s) (2) 170-173 F4.2 10+30W e_LxDBB2 ? Lower limit uncertainty in LxDBB2 (1) 175-178 F4.2 10+30W E_LxDBB2 ? Upper limit uncertainty in LxDBB2 (1) 180-184 F5.1 --- chi2DBB ? The χ2 of the disk blackbody fit (2) 186-188 I3 --- DoFDBB ? Degrees of freedom of disk blackbody fit (2) 190-201 A12 --- State Spectral state(s) (3) -------------------------------------------------------------------------------- Note (1): The 95% confidence interval. Note (2): Blanks for these values in S48 shows where no fit could be achieved. (i.e. χ2/dof>2), which is discussed in section 4.3. Note (3): The state column denotes the spectral states that a given set of spectra are consistent with, based on the classification scheme proposed by Brassington et al. (2010ApJ...725.1805B 2010ApJ...725.1805B): * T indicates a thermally dominant state, P indicates power law dominant state, * M suggests that there is significant, unmodelled emission from another component (>30-40%) * N suggests a result was not-produced by the Brassington et al. (2010ApJ...725.1805B 2010ApJ...725.1805B) simulations * I indicates there is additional line-of-sight absorption, when both simple models have NH significantly above the Galactic value. * The extent to which a component dominates is indicated by the associated number, i.e. 1 implies the state is almost completely dominated by that component, while 2 indicates that there is some unmodelled component also present. Instances of NHDBB=0.00-0.820.00 for some fits are the result of not being able to constrain an upper-limit in Xspec. We believe the source to be in the power law state at these times, with NHPO consistent with the Galactic value. NA denotes where no inference can be made regarding the state (see section 4.4). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- ID Source identifier (1) 5- 8 F4.2 10+22/cm2 NH [0.08/1.1] Hydrogen column density 10- 13 F4.2 10+22/cm2 e_NH Lower limit uncertainty in NH 15- 18 F4.2 10+22/cm2 E_NH Upper limit uncertainty in NH 20- 24 F5.3 keV kT ? Model DBB fit parameter (1) 26- 29 F4.2 keV e_kT ? Lower limit uncertainty in kT 31- 34 F4.2 keV E_kT ? Upper limit uncertainty in kT 36- 40 F5.3 --- Gam ? Model power_law parameter (1) 42- 45 F4.2 --- e_Gam ? Lower limit uncertainty in Gam 47- 50 F4.2 --- E_Gam ? Upper limit uncertainty in Gam 52- 56 F5.2 10+30W Lx1 [2.4/36.3] Minimal 0.5-10 keV luminosity 58- 61 F4.2 10+30W e_Lx1 Lower limit uncertainty in Lx1 63- 66 F4.2 10+30W E_Lx1 Upper limit uncertainty in Lx1 68- 72 F5.2 10+30W Lx2 ? Maximal 0.5-10 keV luminosity 74- 77 F4.2 10+30W e_Lx2 ? Lower limit uncertainty in Lx2 79- 82 F4.2 10+30W E_Lx2 ? Upper limit uncertainty in Lx2 84- 88 F5.1 --- chi2 Model χ2 of fit 90- 93 I4 --- DoF Degrees of Freedom 95- 96 A2 --- Note [D GC] Source coincidence (2) -------------------------------------------------------------------------------- Note (1): The first 23 entries (S3-S45) are fit with a thermally dominant (DBB = disk blackbody) model. The remaining 18 entries (S3-S59) are fit with a power law dominant (PO) model. In both cases HH is forced to be above the Galactic value to reach a better estimate of the source luminosity. Note (2): Note as follows: GC = source is coincident with globular cluster; D = source is in the vicinity of the dust lane. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 12-Nov-2014
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line