J/ApJ/776/74 GASS VII. Bivariate HI-stellar mass function (Lemonias+, 2013)
The GALEX Arecibo SDSS Survey.
VII. The bivariate neutral hydrogen-stellar mass function for massive galaxies.
Lemonias J.J., Schiminovich D., Catinella B., Heckman T.M., Moran S.M.
<Astrophys. J., 776, 74 (2013)>
=2013ApJ...776...74L 2013ApJ...776...74L
ADC_Keywords: Galaxies, nearby ; Ultraviolet ; H I data ; Surveys
Keywords: galaxies: evolution; galaxies: formation
Abstract:
We present the bivariate neutral atomic hydrogen (HI)-stellar mass
function (HISMF) φ(MHI, M*) for massive
(logM*/M☉>10) galaxies derived from a sample of 480 local
(0.025<z<0.050) galaxies observed in H I at Arecibo as part of the
GALEX Arecibo SDSS Survey. We fit six different models to the HISMF
and find that a Schechter function that extends down to a 1% HI gas
fraction, with an additional fractional contribution below that limit,
is the best parameterization of the HISMF. We calculate
ΩHI,M*>1010 and find that massive galaxies contribute
41% of the H I density in the local universe. In addition to the
binned HISMF, we derive a continuous bivariate fit, which reveals that
the Schechter parameters only vary weakly with stellar mass: MHI*,
the characteristic H I mass, scales as M*0.39; α, the
slope of the HISMF at moderate H I masses, scales as M*0.07;
and f, the fraction of galaxies with HI gas fraction greater than 1%,
scales as M*-0.24. The variation of f with stellar mass
should be a strong constraint for numerical simulations. To understand
the physical mechanisms that produce the shape of the HISMF, we
redefine the parameters of the Schechter function as explicit
functions of stellar mass and star formation rate (SFR) to produce a
trivariate fit. This analysis reveals strong trends with SFR. While
MHI* varies weakly with stellar mass and SFR
(MHI*∝M*0.22, MHI*∝SFR-0.03),
α is a stronger function of both stellar mass and especially SFR
(α∝M*0.47, α∝SFR0.95). The
HISMF is a crucial tool that can be used to constrain cosmological
galaxy simulations, test observational predictions of the H I content
of populations of galaxies, and identify galaxies whose properties
deviate from average trends.
Description:
GALEX Arecibo SDSS Survey (GASS; Catinella et al. 2010,
J/MNRAS/403/683) is an HI survey at Arecibo of ∼800 massive
(logM*/M☉>10) local (0.025<z<0.05) galaxies. The sample we use
is based on 480 galaxies from the GASS Data Release 2 (DR2) and is
identical to that described in Catinella et al. (2012, J/A+A/544/A65).
Each galaxy has been observed by Galaxy Evolution Explorer (GALEX) and
Sloan Digital Sky Survey (SDSS), which provide homogeneously measured
stellar mass and SFRs for the sample.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 39 66 Binned data for bivariate (HI)-stellar mass
function (HISMF) Φ(MHI,M*)
--------------------------------------------------------------------------------
See also:
II/312 : GALEX-DR5 (GR5) sources from AIS and MIS (Bianchi+ 2011)
J/MNRAS/436/34 : GALEX Arecibo SDSS survey. Final release (Catinella+, 2013)
J/MNRAS/427/3159 : Quantified HI morphology. VI. NUV/FUV (Holwerda+, 2012)
J/A+A/544/A65 : GALEX Arecibo SDSS survey. VI. (Catinella+, 2012)
J/AJ/142/170 : ALFALFA survey: α.40 HI source cat. (Haynes+, 2011)
J/MNRAS/403/683 : GALEX Arecibo SDSS survey (GASS) (Catinella+, 2010)
J/ApJS/173/293 : UV-Optical galaxy color-magnitude diagram I. (Wyder+, 2007)
http://www.sdss.org/ : SDSS home page
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 F5.2 [Msun] M*min [10/11.3] Start of stellar mass bin (StarMassSt)
7- 11 F5.2 [Msun] M*max [10.2/11.5] End of stellar mass bin
(StarMassEnd)
13- 17 F5.2 [Msun] MHI [7.9/11] log(HI mass) bin (HIMass)
19- 23 F5.2 [Mpc-3] DenAll [-4.9/-2.8]? log10 of space density of all
detections and upper limits logΦ(MHI,M*)
25- 28 F4.2 [Mpc-3] e_DenAll [0.07/0.5]? Poisson uncertainty in DenAll
30- 34 F5.2 [Mpc-3] DenDet [-5/-2.9]? log10 of space density of detections
logΦ(MHI,M*)
36- 39 F4.2 [Mpc-3] e_DenDet [0.1/0.5]? Poisson uncertainty in DenDet
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Catinella et al. Paper I. 2010MNRAS.403..683C 2010MNRAS.403..683C Cat. J/MNRAS/403/683
Schiminovich et al. Paper II. 2010MNRAS.408..919S 2010MNRAS.408..919S
Wang et al. Paper III. 2011MNRAS.412.1081W 2011MNRAS.412.1081W
Catinella et al. Paper IV. 2012MNRAS.420.1959C 2012MNRAS.420.1959C
Moran et al. Paper V. 2012ApJ...745...66M 2012ApJ...745...66M
Catinella et al. Paper VI. 2012A&A...544A..65C 2012A&A...544A..65C Cat. J/A+A/544/65
Catinella et al. Paper VIII. 2013MNRAS.436...34C 2013MNRAS.436...34C Cat. J/MNRAS/436/34
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 23-Mar-2015