J/ApJ/793/108         SEAMBHs. II. Continuum and Hbeta LCs         (Wang+, 2014)

Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe. Wang J.-M., Du P., Hu C., Netzer H., Bai J.-M., Lu K.-X., Kaspi S., Qiu J., Li Y.-R., Wang F., (the SEAMBH collaboration) <Astrophys. J., 793, 108 (2014)> =2014ApJ...793..108W 2014ApJ...793..108W (SIMBAD/NED BibCode)
ADC_Keywords: Active gal. nuclei ; Accretion ; Spectroscopy ; Redshifts Keywords: accretion, accretion disks; cosmology: observations; galaxies: active Abstract: This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae. Description: Detailed information of our reverberation mapping (RM) campaign are given in Paper I (Du+ 2014, J/ApJ/782/45), where we describe the observatory, the telescope, the spectrograph, and the observing procedure in great detail. The campaign started in 2012 October and lasted until 2013 June. We used the Lijiang 2.4m telescope of Yunnan Observatory in China. All targets are classified spectroscopically as narrow line Seyfert 1 galaxies (NLS1s), i.e., (1) FWHM(Hβ)≲2000km/s; (2) [OIII]/Hβ≲3; and (3) strong FeII emission lines. Only radio-quiet sources are selected to avoid contamination by relativistic jet emission to the optical continuum and perhaps emission lines. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 86 10 The Lijiang project: targets and observations table3.dat 174 124 Continuum and Hβ light curves -------------------------------------------------------------------------------- See also: J/ApJ/825/126 : SEAMBHs. V. The third year (Du+, 2016) J/ApJ/806/22 : SEAMBHs. IV. Hβ time lags (Du+, 2015) J/ApJ/782/45 : SEAMBHs. I. Mrk 142, Mrk 335, and IRAS F12397+3333 (Du+, 2014) J/ApJ/764/45 : Luminosity function of broad-line quasars. II. (Kelly+, 2013) J/ApJ/761/143 : Black hole masses of z∼1.4 AGNs from SXDS (Nobuta+, 2012) J/ApJ/755/60 : Reverberation mapping for 5 Seyfert 1 galaxies (Grier+, 2012) J/ApJ/613/682 : AGN central masses & broad-line region sizes (Peterson+, 2004) J/A+A/350/805 : X-ray selected ROSAT AGN spectra (Grupe+, 1999) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Name AGN name (1) 18- 19 I2 h RAh Hour of right ascension (J2000) 21- 22 I2 min RAm Minute of right ascension (J2000) 24- 27 F4.1 s RAs Second of right ascension (J2000) 29 A1 --- DE- Sign of declination (J2000) 30- 31 I2 deg DEd Degree of declination (J2000) 33- 34 I2 arcmin DEm Arcminute of declination (J2000) 36- 37 I2 arcsec DEs Arcsecond of declination (J2000) 39- 44 F6.4 --- z [0.016/0.09] Redshift 46- 53 A8 --- Date1 Start date of monitoring period 54 A1 --- --- [-] 55- 62 A8 --- Date2 End date of monitoring period 64- 66 I3 --- Nsp [27/123] Number of spectroscopic epochs 68- 72 F5.1 arcsec Sep [80.7/234.4] Angular distance between the object and the comparison star (R*) 74- 79 F6.1 deg PA [-167/174.5] Position angle from the AGN to the comparison star 81- 86 A6 --- Note Note on τBLR (2) -------------------------------------------------------------------------------- Note (1): We include the three objects reported in Paper I (Du+ 2014, J/ApJ/782/45). Note (2): Notes on the Hβ time lags: "Yes" means significant lag and "No" lag could not be measured. The special case of Mrk 493 (larger uncertainty on the time lag) is explained in the text of the paper. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 F8.4 d JD-1044 ? Mrk 1044 Julian Date of observation (JD-2456200) 10- 14 F5.3 10-15cW/m2/nm F51-1044 [4.3/6.3]? Mrk 1044 flux at (1+z)5100Å (2) 16- 20 F5.3 10-15cW/m2/nm e_F51-1044 [0.01/0.3]? Error in F51-1044 (3) 22- 26 F5.3 10-13mW/m2 FHb-1044 [3.4/4.5]? Mrk 1044 Hβ integrated flux (4) 28- 32 F5.3 10-13mW/m2 e_FHb-1044 [0.01/0.05]? Error in FHb-1044 (3) 34- 41 F8.4 d JD-V-382 Mrk 382 Julian Date of V band observation (JD-2456200) 43- 48 F6.3 mag Vmag [-0.08/0.03] Mrk 382 V band instrumental magnitude 50- 54 F5.3 mag e_Vmag [0.003/0.04] Error in Vmag 56- 63 F8.4 d JD-382 ? Mrk 382 Julian Date of observation (JD-2456200) 65- 69 F5.3 10-13mW/m2 FHb-382 [0.2/0.5]? Mrk 382 Hβ integrated flux (4) 71- 75 F5.3 10-13mW/m2 e_FHb-382 [0.004/0.03]? Error in FHb-382 (3) 77- 84 F8.4 d JD-MCG ? MCG+06-26-012 Julian Date of observation (JD-2456200) 86- 90 F5.3 10-15cW/m2/nm F51-MCG [0.5/0.9]? MCG+06-26-012 flux at (1+z)5100Å (2) 92- 96 F5.3 10-15cW/m2/nm e_F51-MCG [0.004/0.02]? Error in F51-MCG (3) 98-102 F5.3 10-13mW/m2 FHb-MCG [0.3/0.5]? MCG+06-26-012 Hβ integrated flux (4) 104-108 F5.3 10-13mW/m2 e_FHb-MCG [0.004/0.01]? Error in FHb-MCG (3) 110-117 F8.4 d JD-486 ? Mrk 486 Julian Date of observation (JD-2456200) 119-123 F5.3 10-15cW/m2/nm F51-486 [3/3.6]? Mrk 486 flux at (1+z)5100Å (2) 125-129 F5.3 10-15cW/m2/nm e_F51-486 [0.006/0.08]? Error in F51-486 (3) 131-135 F5.3 10-13mW/m2 FHb-486 [2.8/3.6]? Mrk 486 Hβ integrated flux (4) 137-141 F5.3 10-13mW/m2 e_FHb-486 [0.009/0.03]? Error in FHb-486 (3) 143-150 F8.4 d JD-493 ? Mrk 493 Julian Date of observation (JD-2456200) 152-156 F5.3 10-15cW/m2/nm F51-493 [1.5/2.1]? Mrk 493 flux at (1+z)5100Å (2) 158-162 F5.3 10-15cW/m2/nm e_F51-493 [0.006/0.04]? Error in F51-493 (3) 164-168 F5.3 10-13mW/m2 FHb-493 [0.9/1.1]? Mrk 493 Hβ integrated flux (4) 170-174 F5.3 10-13mW/m2 e_FHb-493 [0.005/0.02]? Error in FHb-493 (3) -------------------------------------------------------------------------------- Note (2): In units of 1e-15erg/s/cm2/Å. Note (3): The systematic uncertainties of F5100 and FHβ (see paper I) are (F5100,F)=(0.163,0.056), (0.018,0.017), (0.049,0.052) and (0.045,0.025) for Mrk 1044, MCG 06, Mrk 486 and Mrk 493 respectively. ΔF=0.016 for Mrk 382. Note (4): In units of 1e-13erg/s/cm2. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Du et al. Paper I. 2014ApJ...782...45D 2014ApJ...782...45D Cat. J/ApJ/782/45 Hu et al. Paper III. 2015ApJ...804..138H 2015ApJ...804..138H Du et al. Paper IV. 2015ApJ...806...22D 2015ApJ...806...22D Cat. J/ApJ/806/22 Du et al. Paper V. 2016ApJ...825..126D 2016ApJ...825..126D Cat. J/ApJ/825/126 Du et al. Paper VI. 2016ApJ...820...27D 2016ApJ...820...27D Xiao et al. Paper VII. 2018ApJ...864..109X 2018ApJ...864..109X Li et al. Paper VIII. 2018ApJ...869..137L 2018ApJ...869..137L Du et al. Paper IX. 2018ApJ...856....6D 2018ApJ...856....6D Cat. J/ApJ/856/6 Lu et al. Paper X. 2019ApJ...877...23L 2019ApJ...877...23L Cat. J/ApJ/877/23 Cackett et al. Paper XI. 2020ApJ...896....1C 2020ApJ...896....1C Cat. J/ApJ/896/1 Hu et al. Paper XII. 2021ApJS..253...20H 2021ApJS..253...20H Cat. J/ApJS/253/20
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 30-Aug-2016
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line