J/ApJ/801/97 GOODS-S & UDS stellar mass catalogs from CANDELS (Santini+, 2015)
Stellar masses from the CANDELS survey: the GOODS-South and UDS fields.
Santini P., Ferguson H.C., Fontana A., Mobasher B., Barro G.,
Castellano M., Finkelstein S.L., Grazian A., Hsu L.T., Lee B., Lee S.-K.,
Pforr J., Salvato M., Wiklind T., Wuyts S., Almaini O., Cooper M.C.,
Galametz A., Weiner B., Amorin R., Boutsia K., Conselice C.J., Dahlen T.,
Dickinson M.E., Giavalisco M., Grogin N.A., Guo Y., Hathi N.P.,
Kocevski D., Koekemoer A.M., Kurczynski P., Merlin E., Mortlock A.,
Newman J.A., Paris D., Pentericci L., Simons R., Willner S.P.
<Astrophys. J., 801, 97 (2015)>
=2015ApJ...801...97S 2015ApJ...801...97S
ADC_Keywords: Galaxy catalogs ; Redshifts ; Stars, masses ; Stars, ages ;
Surveys ; Spectroscopy
Keywords: catalogs; galaxies: fundamental parameters; galaxies: high-redshift;
galaxies: stellar content; surveys
Abstract:
We present the public release of the stellar mass catalogs for the
GOODS-S and UDS fields obtained using some of the deepest near-IR
images available, achieved as part of the Cosmic Assembly
Near-infrared Deep Extragalactic Legacy Survey project. We combine the
effort from 10 different teams, who computed the stellar masses using
the same photometry and the same redshifts. Each team adopted their
preferred fitting code, assumptions, priors, and parameter grid. The
combination of results using the same underlying stellar isochrones
reduces the systematics associated with the fitting code and other
choices. Thanks to the availability of different estimates, we can
test the effect of some specific parameters and assumptions on the
stellar mass estimate. The choice of the stellar isochrone library
turns out to have the largest effect on the galaxy stellar mass
estimates, resulting in the largest distributions around the median
value (with a semi interquartile range larger than 0.1dex). On the
other hand, for most galaxies, the stellar mass estimates are
relatively insensitive to the different parameterizations of the star
formation history. The inclusion of nebular emission in the model
spectra does not have a significant impact for the majority of
galaxies (less than a factor of 2 for ∼80% of the sample).
Nevertheless, the stellar mass for the subsample of young galaxies
(age <100Myr), especially in particular redshift ranges (e.g.,
2.2<z<2.4, 3.2<z<3.6, and 5.5<z<6.5), can be seriously overestimated
(by up to a factor of 10 for <20Myr sources) if nebular contribution
is ignored.
Description:
The CANDELS-GOODS-S catalog contains 34930 sources. The total area of
∼170arcmin2 was observed by HST/WFC3 with a mixed strategy,
combining CANDELS data in a deep (central one-third of the field) and
a wide (southern one-third) region with Early Release Science (ERS;
Windhorst et al. 2011ApJS..193...27W 2011ApJS..193...27W) (northern one-third) and HUDF09
(Bouwens et al. 2010ApJ...709L.133B 2010ApJ...709L.133B) observations. The F160W mosaic
reaches a 5σ limiting magnitude (within an aperture of radius
0.17 arcsec) of 27.4, 28.2, and 29.7 in the CANDELS wide, deep, and
HUDF regions, respectively. The multiwavelength catalog includes 18
bands (see Guo et al. (2013, J/ApJS/207/24) for a summary of the
GOODS-S UV-to-mid-IR data set and corresponding survey references).
The CANDELS-UDS catalog contains 35932 sources distributed over an
area of ∼201.7arcmin2. The F160W CANDELS image reaches a 5σ
limiting depth of 27.45 within an aperture of radius 0.20 arcsec. The
multiwavelength catalog includes 19 bands (see Galametz et al. (2013,
J/ApJS/206/10) for a summary of the UDS UV-to-mid-IR data set and
corresponding survey references).
The observations in the CANDELS/UDS field using the Inamori-Magellan
Areal Camera and Spectrograph (IMACS) on the Magellan Baade 6.5-m
telescope were conducted on the nights of 2010 December 30-31 (R∼1200
at 7500Å). The 475 unique sources in the Magellan/IMACS
spectroscopic sample are drawn from the Subaru optical imaging catalog
of Furusawa et al. (2008, J/ApJS/176/1), which covers the larger
1.22deg2 Subaru/XMM-Newton Deep Survey (SXDS; Ueda et al. 2008,
J/ApJS/179/124) field surrounding the CANDELS/UDS region.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 73 502 Magellan/IMACS Redshift Catalog
table4a.dat 295 34930 Positions, flags, redshift and stellar masses
for GOODS-S fields
table4b.dat 295 35932 Positions, flags, redshift and stellar masses
for UDS field
table5a.dat 1046 34930 Other physical parameters for the GOODS-S field
table5b.dat 1046 35932 Other physical parameters for the UDS field
fig12.dat 24 29247 Filter curves (figure 12)
refs.dat 236 111 References
--------------------------------------------------------------------------------
See also:
III/268 : DEEP2 Redshift Survey, Data Release 4 (Matthews+ 2013)
II/319 : UKIDSS-DR9 LAS, GCS and DXS Surveys (Lawrence+ 2012)
II/261 : GOODS initial results (Giavalisco+, 2004)
J/ApJS/207/24 : GOODS-S CANDELS multiwavelength catalog (Guo+, 2013)
J/ApJS/206/10 : CANDELS multiwavelength catalog (Galametz+, 2013)
J/ApJ/769/80 : Spitzer/IRAC observations of five deep fields (Ashby+, 2013)
J/MNRAS/428/3089 : X-ray properties of BzK-selected galaxies (Rangel+, 2013)
J/MNRAS/425/2116 : Arizona CDFS Environment Survey, ACES (Cooper+, 2012)
J/ApJ/756/164 : UV galaxies in CANDELS from z=8 to z=4 (Finkelstein+, 2012)
J/ApJS/195/10 : The CDF-S survey: 4Ms source catalogs (Xue+, 2011)
J/ApJS/193/30 : UV-to-FIR analysis of sources in the EGS. II. (Barro+, 2011)
J/ApJS/193/14 : DEEP3 Galaxy Redshift Survey: GOODS-N field (Cooper+, 2011)
J/ApJS/193/13 : Spitzer/IRAC sources in the EGS I. SEDs (Barro+, 2011)
J/ApJ/708/137 : Broad-line AGNs in zCOSMOS survey (Merloni+, 2010)
J/ApJS/179/124 : Subaru/XMM-Newton deep survey (SXDS) III. (Ueda+, 2008)
J/ApJS/176/1 : Subaru/XMM-Newton deep survey (SXDS). II. (Furusawa+, 2008)
J/ApJ/675/234 : Stellar mass functions for 0<z<4 gal (Perez-Gonzalez+, 2008)
J/MNRAS/381/1369 : Redshifts in Subaru/XMM Deep Field (Geach+, 2007)
J/MNRAS/372/741 : SXDF 100µJy catalogue (Simpson+, 2006)
J/ApJS/157/1 : Red-Sequence Cluster Survey (Gladders+, 2005)
J/AJ/127/3121 : TKRS catalog of GOODS-North Field (Wirth+, 2004)
J/A+A/401/1063 : Evolutionary synthesis models. III. (Anders+, 2003)
J/AJ/120/2206 : NTT, HDF-S and HDF-N photometric redshifts (Fontana+, 2000)
http://candels.ucolick.org/data_access/GOODS-S.html : CANDELS GOODS-S home page
http://candels.ucolick.org/data_access/UDS.html : CANDELS UDS home page
http://archive.stsci.edu/prepds/candels/ : CANDELS on MAST
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 I8 --- ID [10011963/30136160] Object identifier (1)
10- 18 F9.6 deg RAdeg Right Ascension in decimal degrees (J2000) (1)
20- 29 F10.7 deg DEdeg Declination in decimal degrees (J2000) (1)
31- 35 F5.2 mag Rmag [18/23.5] The R band AB magnitude (1)
37- 40 A4 --- Mask IMACS slitmask name
42- 44 I3 --- Slit [1/134] IMACS slitmask slit number
corresponding to object
46- 52 F7.1 d MJD Modified Julian Date of observation
54- 61 F8.5 --- z [-0.001/2.81]? Spectroscopic redshift
63- 70 F8.5 --- zHelio [-0.0011/2.81]? Heliocentric-frame redshift
72- 73 I2 --- q_z [-2/4] Quality code on z (3 or 4 = secure) (2)
--------------------------------------------------------------------------------
Note (1): From Furusawa et al. (2008, J/ApJS/176/1;
in Simbad).
Note (2): Quality code as follows:
-1 = star;
3 or 4 = secure redshift;
1 or 2 = unknown.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4[ab].dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- Seq [1/35932] Designation (G1)
7- 16 F10.7 deg RAdeg Right ascension in decimal degrees (J2000)
18- 28 F11.7 deg DEdeg Declination in decimal degrees (J2000)
30- 34 F5.2 mag Hmag [12.7/32.1]?=99 Observed magnitude in
WFC3 F160W filter
36- 42 F7.2 --- SNR [0/9999] H-band Signal-to-noise ratio (1)
44- 45 I2 --- qph [0/18] Photometry flag; 0=ok, >0=bad
photometry
47- 47 I1 --- Star [0/1] Spectroscopic star (1=spec. star)
49- 52 F4.2 --- S/G [0/1] SExtractor stellarity index on
F160W band (1=star)
54- 54 I1 --- AGN [0/1] Xray AGN from Xue et al. 2011;
J/ApJS/195/10
56- 62 F7.4 --- zbest [0/9.92] Redshift (2)
64- 71 F8.4 --- zsp [0/6.7]?=-99 Spectroscopic redshift
73- 75 I3 --- q_zsp [1/4]?=-99 Quality of spectroscopic
redshift; 1=good, 2=intermediate,
3=uncertain
77- 79 A3 --- r_zsp Reference spectroscopic survey
(see refs.dat file)
81- 85 F5.3 --- zph [0.009/9.92] Photometric redshift (3)
87- 92 F6.2 --- b_zph ?=-99 Lower zph 68% confidence limit
94- 99 F6.2 --- B_zph ?=-99 Upper zph 68% confidence limit
101-106 F6.2 --- b_zph2 ?=-99 Lower zph 95% confidence limit
108-113 F6.2 --- B_zph2 ?=-99 Upper zph 95% confidence limit
115-121 F7.3 --- zAGN ? Photometric redshift for AGNs from
Hsu et al 2014ApJ...796...60H 2014ApJ...796...60H; where ?=-99
for non AGN sources (only for table4a.dat)
123-131 E9.3 Msun M ?=-99 CANDELS reference median stellar
mass Mmed (4)
133-141 E9.3 Msun e_M ?=-99 Standard deviation on Mmed (5)
143-151 E9.3 Msun Mneb ?=-99 Median stellar mass including nebular
component Mneb (6)
153-161 E9.3 Msun e_Mneb ?=-99 Standard deviation on Mneb (5)
163-169 F7.3 --- dMz ?=-99 Relative uncertainty due to model
degeneracy and zphot scatter (7)
171-176 F6.2 [Msun] M2at ?=-99 Stellar mass from Method 2aτ (8)
178-183 F6.2 [Msun] M2dt ?=-99 Stellar mass from Method 2dτ (8)
185-190 F6.2 [Msun] M6at ?=-99 Stellar mass from Method 6aτ (8)
192-197 F6.2 [Msun] M10c ?=-99 Stellar mass from Method 10c (8)
199-204 F6.2 [Msun] M11at ?=-99 Stellar mass from Method 11aτ (8)
206-211 F6.2 [Msun] M12a ?=-99 Stellar mass from Method 12a (8)
213-218 F6.2 [Msun] M13at ?=-99 Stellar mass from Method 13aτ (8)
220-225 F6.2 [Msun] M14a ?=-99 Stellar mass from Method 14a (8)
227-232 F6.2 [Msun] M15a ?=-99 Stellar mass from Method 15a (8)
234-239 F6.2 [Msun] M6atNEB ?=-99 Stellar mass from Method
6aτNEB (8)
241-246 F6.2 [Msun] M6adt ?=-99 Stellar mass from Method 6adelτ (8)
248-253 F6.2 [Msun] M6ainvt ?=-99 Stellar mass from Method 6ainvτ(8)
255-260 F6.2 [Msun] M10cdust ?=-99 Stellar mass from Method 10cdust (8)
262-267 F6.2 [Msun] M12at ?=-99 Stellar mass from Method 12aτ (8)
269-274 F6.2 [Msun] M14acst ?=-99 Stellar mass from Method 14aconst (9)
276-281 F6.2 [Msun] M14alin ?=-99 Stellar mass from Method 14alin (9)
283-288 F6.2 [Msun] M14adt ?=-99 Stellar mass from Method 14adelτ(9)
290-295 F6.2 [Msun] M14at ?=-99 Stellar mass from Method 14aτ (9)
--------------------------------------------------------------------------------
Note (1): The signal-to-noise ratio is calculated as flux/flux_error
in the F160W band.
Note (2): Best redshift estimate available:
zbest = zsp if good quality spectroscopic redshift is available;
zbest = zAGN if good quality spectroscopic redshift is unavailable and
source is identified as X-ray AGN;
zbest = zph if good quality spectroscopic redshift is unavailable and
source is not identified as X-ray AGN.
Note (3): Official CANDELS GOODS-S/UDS photometric redshift catalog (Dahlen
et al., in prep.): photometric redshifts are based on a hierarchical
Bayesian approach that combines the full P(z) distributions derived by
six CANDELS photo-z investigators (Dahlen, Fontana, Gruetzbauch,
Salvato, Wiklind, and Wuyts); 68% and 95% confidence intervals are
calculated from the final P(z) distribution. The distributions are
"normalized" so that the 68% interval correctly recovers 68% of the
spectroscopic control sample within the interval.
Note (4): The median is calculated by the Hodges-Lehmann estimator in the
linear space considering only estimates with the same assumptions for
IMF (Chabrier) and stellar templates (Bruzual & Charlot
2003MNRAS.344.1000B 2003MNRAS.344.1000B) (total of 7 estimates): Methods 2aτ,
6aτ, 11aτ, 12a, 13aτ, 14a, 15a (see below for more
details - see also Santini et al. 2014A&A...562A..30S 2014A&A...562A..30S).
Note (5): The standard deviation is calculated in the linear space.
Note (6): The median is calculated by the Hodges-Lehmann estimator in the
linear space considering only estimates with the same assumptions for
IMF (Chabrier) and stellar templates (Bruzual & Charlot
2003MNRAS.344.1000B 2003MNRAS.344.1000B) and including the nebular component (total of 3
estimates): Methods 6aτNEB, 11aτ, 14a (see below for
more details - see also Santini et al. 2014A&A...562A..30S 2014A&A...562A..30S).
Note (7): Relative uncertainty (=stdev/Mass) that accounts for model
degeneracy and uncertainties in photometric redshifts (or only for
model degeneracy for spectroscopic sources). Mass and standard
deviation are calculated with Method 6a_τ by means of a Monte
Carlo simulation: masses were extracted 10000 times according to the
probability distribution function P(z,M) (see Santini et al.
2014A&A...562A..30S 2014A&A...562A..30S).
Note (8): See Santini et al. 2014A&A...562A..30S 2014A&A...562A..30S for details on the fitting
methods.
Note (9): See Santini et al. 2014A&A...562A..30S 2014A&A...562A..30S for details on Method 14a:
14a_const: constant SFH;
14a_lin: linearly increasing SFH;
14a_delτ: delayed τ model SFH;
14a_τ: τ model (i.e. exponentially decreasing) SFH.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5[ab].dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- Seq [1/35932] Designation (G1)
7- 11 F5.1 [yr] age2at ?=-99 Age from Method 2aτ (2)
13- 19 F7.3 Gyr tau2at ?=-99 τ from Method 2aτ (2)
21- 25 F5.1 mag Av2at ?=-99 Av from Method 2aτ (2)
27- 36 E10.4 Msun/yr SFR2at ?=-99 SFR from Method 2aτ (2)
38- 46 E9.3 --- X2.2at ?=-99 Reduced chi2 from Method 2aτ (2)
48- 54 F7.3 [yr] age2dt ?=-99 Age from Method 2dτ (2)
56- 62 F7.3 Gyr tau2dt ?=-99 τ from Method 2dτ (2)
64- 68 F5.1 mag Av2dt ?=-99 Av from Method 2dτ (2)
70- 76 F7.3 Sun met2dt ?=-99 Gas metallicity from Method
2dτ (2)
78- 83 F6.2 [yr] age4b ? Age from Method 4b (table5b only) (2)
85- 90 F6.2 mag EBV4b ? E(B-V) from Method 4b (table5b only) (2)
92- 97 F6.2 [Msun] Ml6at ?=-99 Lower stellar mass 68% confidence
limit from Method 6aτ (2)
99- 104 F6.2 [Msun] Mu6at ?=-99 Upper stellar mass 68% confidence
limit from Method 6aτ (2)
106- 111 F6.2 [yr] age6at ?=-99 Age from Method 6aτ (2)
113- 117 F5.1 Gyr tau6at ?=-99 τ from Method 6aτ (2)
119- 124 F6.2 mag EBV6at ?=-99 E(B-V) from Method 6aτ (2)
126- 135 E10.4 Msun/yr SFR6at ?=-99 SFR from Method 6aτ (2)
137- 142 F6.2 Sun met6at ?=-99 Gas metallicity from Method
6aτ (2)
144- 146 I3 --- el6at [1/2]?=-99 Extinction law from Method
6aτ; 1: Calzetti et al.
2000ApJ...533..682C 2000ApJ...533..682C; 2: SMC (2)
148- 156 E9.3 --- X2.6at ?=-99 Reduced chi2 from Method 6aτ (2)
158- 166 E9.3 10-7W/Hz L1.6at ?=-99 Rest-frame luminosity at 140nm
Lν(140nm) from Method 6aτ;
erg/s/Hz (2)
168- 176 E9.3 10-7W/Hz L2.6at ?=-99 Rest-frame luminosity at 270nm
Lν(270nm) from Method 6aτ;
erg/s/Hz (2)
178- 183 F6.2 mag UM6at ?=-99 AB rest-frame magnitude in U band
from Method 6aτ (2)
185- 190 F6.2 mag BM6at ?=-99 AB rest-frame magnitude in B band
from Method 6aτ (2)
192- 197 F6.2 mag VM6at ?=-99 AB rest-frame magnitude in V band
from Method 6aτ (2)
199- 204 F6.2 mag RM6at ?=-99 AB rest-frame magnitude in R band
from Method 6aτ (2)
206- 211 F6.2 mag IM6at ?=-99 AB rest-frame magnitude in I band
from Method 6aτ (2)
213- 218 F6.2 mag JM6at ?=-99 AB rest-frame magnitude in J band
from Method 6aτ (2)
220- 225 F6.2 mag KM6at ?=-99 AB rest-frame magnitude in K band
from Method 6aτ (2)
227- 233 F7.3 [yr] age10c ?=-99 Age from Method 10c (2)
235- 237 I3 --- SFH10c ?=-99 Star formation history from
Method 10c (2)(3)
239- 243 F5.1 Gyr tau10c ?=-99 τ from Method 10c (2)
245- 249 F5.1 Sun met10c ?=-99 Gas metallicity from Method 10c (2)
251- 256 F6.2 [Msun] Ml11at ?=-99 Lower stellar mass 99% confidence
limit from Method 11aτ (2)
258- 263 F6.2 [Msun] Mu11at ?=-99 Upper stellar mass 99% confidence
limit from Method 11aτ (2)
265- 271 F7.3 [yr] age11at ?=-99 Age from Method 11aτ (2)
273- 282 E10.4 Msun/yr SFR11at ?=-99 SFR from Method 11aτ (2)
284- 289 F6.2 [Msun] Ml12a ?=-99 Lower stellar mass 68% confidence
limit from Method 12a (2)
291- 296 F6.2 [Msun] Mu12a ?=-99 Upper stellar mass 68% confidence
limit from Method 12a (2)
298- 303 F6.2 [Msun] M2l12a ?=-99 Lower stellar mass 95% confidence
limit from Method 12a (2)
305- 310 F6.2 [Msun] M2u12a ?=-99 Upper stellar mass 95% confidence
limit from Method 12a (2)
312- 318 F7.3 [yr] age12a ?=-99 Age from Method 12a (2)
320- 324 F5.1 Gyr tau12a ?=-99 τ from Method 12a (2)
326- 332 F7.3 mag EBV12a ?=-99 E(B-V) from Method 12a (2)
334- 338 F5.1 Sun met12a ?=-99 Gas metallicity from Method 12a (2)
340- 345 F6.2 [Lsun] Lb12a ?=-99 Stellar bolometric luminosity
corrected for dust extinction
from Method 12a (2)(4)
347- 355 E9.3 --- X2.12a ?=-99 Reduced chi2 from Method 12a (2)
357- 361 F5.1 [yr] age13at ?=-99 Age from Method 13aτ (2)
363- 369 F7.3 Gyr tau13at ?=-99 τ from Method 13aτ (2)
371- 375 F5.1 mag Av13at ?=-99 Av from Method 13aτ (2)
377- 386 E10.4 Msun/yr SFR13at ?=-99 SFR from Method 13aτ (2)
388- 396 E9.3 --- X2.13at ?=-99 Reduced chi2 from Method 13aτ(2)
398- 404 F7.3 [yr] age14a ?=-99 Age from Method 14a (2)
406- 408 I3 --- SFH14a ?=-99 Star formation history from
Method 14a (2)(5)
410- 416 F7.3 Gyr tau14a ?=-99 τ from Method 14a (2)
418- 424 F7.3 mag EBV14a ?=-99 E(B-V) from Method 14a (2)
426- 435 E10.4 Msun/yr SFR14a ?=-99 SFR from Method 14a (2)(5)
437- 439 I3 --- q14a [1/3]?=-99 Quality of the fit from Method
14a; 1:best; 2:good; others:bad (2)
441- 447 F7.3 [yr] age15a ? Age from Method 15a (table5a only) (2)
449- 453 F5.1 Gyr tau15a ? τ from Method 15a (table5a only) (2)
455- 461 F7.3 mag EBV15a ? E(B-V) from Method 15a (table5a only) (2)
463- 467 F5.1 Sun met15a ? Gas metallicity from Method 15a
(table5a only) (2)
469- 474 F6.2 [yr] age6atNEB ?=-99 Age from Method 6aτNEB (2)
476- 480 F5.1 Gyr tau6atNEB ?=-99 τ from Method 6aτNEB (2)
482- 487 F6.2 mag EBV6atNEB ?=-99 E(B-V) from Method 6aτNEB (2)
489- 498 E10.4 Msun/yr SFR6atNEB ?=-99 SFR from Method 6aτNEB (2)
500- 505 F6.2 Sun met6atNEB ?=-99 Gas metallicity from Method
6aτNEB (2)
507- 509 I3 --- el6atNEB [1/2]?=-99 Extinction law from Method
6aτNEB; 1: Calzetti et
al. 2000ApJ...533..682C 2000ApJ...533..682C; 2: SMC (2)
511- 519 E9.3 --- X2.6atNEB ?=-99 Reduced chi2 from Method
6aτNEB (2)
521- 529 E9.3 10-7W/Hz L1.6atNEB ?=-99 Rest-frame luminosity at 140nm
Lν(140nm) from Method
6aτNEB; erg/s/Hz (2)
531- 539 E9.3 10-7W/Hz L2.6atNEB ?=-99 Rest-frame luminosity at 270nm
Lν(270nm) from Method
6aτNEB; erg/s/Hz (2)
541- 546 F6.2 mag UM6atNEB ?=-99 AB rest-frame magnitude in U band
from Method 6aτNEB (2)
548- 553 F6.2 mag BM6atNEB ?=-99 AB rest-frame magnitude in B band
from Method 6aτNEB (2)
555- 560 F6.2 mag VM6atNEB ?=-99 AB rest-frame magnitude in V band
from Method 6aτNEB (2)
562- 567 F6.2 mag RM6atNEB ?=-99 AB rest-frame magnitude in R band
from Method 6aτNEB (2)
569- 574 F6.2 mag IM6atNEB ?=-99 AB rest-frame magnitude in I band
from Method 6aτNEB (2)
576- 581 F6.2 mag JM6atNEB ?=-99 AB rest-frame magnitude in J band
from Method 6aτNEB (2)
583- 588 F6.2 mag KM6atNEB ?=-99 AB rest-frame magnitude in K band
from Method 6aτNEB (2)
590- 595 F6.2 [yr] age-6adt ?=-99 Age from Method 6adelτ (2)
597- 601 F5.1 Gyr tau-6adt ?=-99 τ from Method 6adelτ (2)
603- 608 F6.2 mag EBV-6adt ?=-99 E(B-V) from Method 6adelτ (2)
610- 619 E10.4 Msun/yr SFR-6adt ?=-99 SFR from Method 6adelτ (2)
621- 626 F6.2 Sun met-6adt ?=-99 Gas metallicity from Method
6adelτ (2)
628- 630 I3 --- el6ad ?=-99 Extinction law from Method
6adelτ; 1: Calzetti et al.
2000ApJ...533..682C 2000ApJ...533..682C; 2: SMC (2)
632- 640 E9.3 --- X2.6adt ?=-99 Reduced chi2 from Method
6adelτ (2)
642- 650 E9.3 10-7W/Hz L1.6adt ?=-99 Rest-frame luminosity at 140nm
Lν(140nm) from Method
6adelτ; erg/s/Hz (2)
652- 660 E9.3 10-7W/Hz L2.6adt ?=-99 Rest-frame luminosity at 270nm
Lν(270nm) from Method
6adelτ; erg/s/Hz (2)
662- 667 F6.2 mag UM6adt ?=-99 AB rest-frame magnitude in U band
from Method 6adelτ (2)
669- 674 F6.2 mag BM6adt ?=-99 AB rest-frame magnitude in B band
from Method 6adelτ (2)
676- 681 F6.2 mag VM6adt ?=-99 AB rest-frame magnitude in V band
from Method 6adelτ (2)
683- 688 F6.2 mag RM6adt ?=-99 AB rest-frame magnitude in R band
from Method 6adelτ (2)
690- 695 F6.2 mag IM6adt ?=-99 AB rest-frame magnitude in I band
from Method 6adelτ (2)
697- 702 F6.2 mag JM6adt ?=-99 AB rest-frame magnitude in J band
from Method 6adelτ (2)
704- 709 F6.2 mag KM6adt ?=-99 AB rest-frame magnitude in K band
from Method 6adelτ (2)
711- 716 F6.2 [yr] age6ainvt ?=-99 Age from Method 6ainvτ (2)
718- 722 F5.1 Gyr tau6ainvt ?=-99 τ from Method 6ainvτ (2)
724- 731 F8.2 mag EBV6ainvt ?=-99 E(B-V) from Method 6ainvτ (2)
733- 742 E10.4 Msun/yr SFR6ainvt ?=-99 SFR from Method 6ainvτ (2)
744- 749 F6.2 Sun met6ainvt ?=-99 Gas metallicity from Method
6ainvτ (2)
751- 753 I3 --- el6ainvt [1/2]?=-99 Extinction law from Method
6ainvτ; 1: Calzetti et al.
2000ApJ...533..682C 2000ApJ...533..682C; 2: SMC (2)
755- 763 E9.3 --- X2.6ainvt ?=-99 Reduced chi2 from Method
6ainvτ (2)
765- 773 E9.3 10-7W/Hz L1.6ainvt ?=-99 Rest-frame luminosity at 140nm
Lν(140nm) from Method
6ainvτ; erg/s/Hz (2)
775- 783 E9.3 10-7W/Hz L2.6ainvt ?=-99 Rest-frame luminosity at 270nm
Lν(270nm) from Method
6ainvτ; erg/s/Hz (2)
785- 790 F6.2 mag UM6ainvt ?=-99 AB rest-frame magnitude in U band
from Method 6ainvτ (2)
792- 797 F6.2 mag BM6ainvt ?=-99 AB rest-frame magnitude in B band
from Method 6ainvτ (2)
799- 804 F6.2 mag VM6ainvt ?=-99 AB rest-frame magnitude in V band
from Method 6ainvτ (2)
806- 811 F6.2 mag RM6ainvt ?=-99 AB rest-frame magnitude in R band
from Method 6ainvτ (2)
813- 818 F6.2 mag IM6ainvt ?=-99 AB rest-frame magnitude in I band
from Method 6ainvτ (2)
820- 825 F6.2 mag JM6ainvt ?=-99 AB rest-frame magnitude in J band
from Method 6ainvτ (2)
827- 832 F6.2 mag KM6ainvt ?=-99 AB rest-frame magnitude in K band
from Method 6ainvτ (2)
834- 840 F7.3 [yr] age10cdust ?=-99 Age from Method 10cdust (2)
842- 844 I3 --- SFH10cdust ?=-99 Star formation history from Method
10cdust (2)(3)
846- 850 F5.1 Gyr tau10cdust ?=-99 τ from Method 10cdust (2)
852- 856 F5.1 Sun met10cdust ?=-99 Gas metallicity from Method
10cdust (2)
858- 864 F7.3 [yr] age12at ?=-99 Age from Method 12aτ (2)
866- 870 F5.1 Gyr tau12at ?=-99 τ from Method 12aτ (2)
872- 878 F7.3 mag EBV12at ?=-99 E(B-V) from Method 12aτ (2)
880- 884 F5.1 Sun met12at ?=-99 Gas metallicity from Method
12aτ (2)
886- 891 F6.2 [Lsun] Lb12at ?=-99 Stellar bolometric luminosity
corrected for dust extinction
from Method 12a (2)(4)
893- 901 E9.3 --- X2.12at ?=-99 Reduced chi2 from Method 12aτ(2)
903- 909 F7.3 [yr] age14acst ?=-99 Age from Method 14aconst (2)
911- 919 F9.3 mag EBV14acst ?=-99 E(B-V) from Method 14aconst (2)
921- 930 E10.4 Msun/yr SFR14acst ?=-99 SFR from Method 14aconst (2)
932- 934 I3 --- q14acst [1/3]?=-99 Quality of the fit from Method
14aconst; 1:best; 2:good;
others:bad (2)
936- 942 F7.3 [yr] age14alin ?=-99 Age from Method 14alin (2)
944- 952 F9.3 mag EBV14alin ?=-99 E(B-V) from Method 14alin (2)
954- 963 E10.4 Msun/yr SFR14alin ?=-99 SFR from Method 14alin (2)
965- 967 I3 --- q14alin [1/3]?=-99 Quality of the fit from Method
14alin; 1:best; 2:good;
others:bad (2)
969- 975 F7.3 [yr] age14adt ?=-99 Age from Method 14adelτ (2)
977- 983 F7.3 Gyr tau14adt ?=-99 τ from Method 14adelτ (2)
985- 993 F9.3 mag EBV14adt ?=-99 E(B-V) from Method 14adelτ (2)
995-1004 E10.4 Msun/yr SFR14adt ?=-99 SFR from Method 14adelτ (2)
1006-1008 I3 --- q14adt [1/3]?=-99 Quality of the fit from Method
14adelτ; 1:best; 2:good;
others:bad (2)
1010-1016 F7.3 [yr] age14at ?=-99 Age from Method 14aτ (2)
1018-1024 F7.3 Gyr tau14at ?=-99 τ from Method 14aτ (2)
1026-1033 F8.3 mag EBV14at ?=-99 E(B-V) from Method 14aτ (2)
1035-1044 E10.4 Msun/yr SFR14at ?=-99 SFR from Method 14aτ (2)
1046 I1 --- q14at [0/3] Quality of fit from Method 14a_τ;
1=best; 2=good; others=bad (2)
--------------------------------------------------------------------------------
Note (2): See Santini et al. 2014A&A...562A..30S 2014A&A...562A..30S for details on the fitting
methods.
Note (3):
1 = Exponentially decreasing SFH;
2 = Constant SFH;
3 = Truncated SFH (constant for time τ, zero afterwards);
4 = no solution.
Note (4): Stellar bolometric luminosity (91 Anstrom - 160 micron), corrected
for dust extinction using the E(B-V) value derived in the SED fit.
The contribution from wavelengths shorter than the Lyman break and
longer than ∼2-3 micron (rest frame) are essentially negligible.
Note (5):
1 = Constant SFH;
2 = Linearly increasing SFH;
3 = Delayed τ SFH;
4 = Exponentially decreasing SFH.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: fig12.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1 A1 --- F Filter (UBVRI or JK)
3- 14 F12.6 0.1nm lambda [2000/30000] Wavelength; Angstroms
16- 24 F9.6 --- Trans [0/1] Normalized transmission value
--------------------------------------------------------------------------------
Byte-by-byte Description of file: refs.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 A3 --- Ref Reference code
5 A1 --- f_Ref Flag on Ref (1)
7- 25 A19 --- BibCode Bibcode of the main reference
27- 55 A29 --- Aut Author's name(s) of the main reference
57-236 A180 --- Comm Comment (2)
--------------------------------------------------------------------------------
Note (1): Flag as follows:
s = Following references from X-ray catalog (Silverman+ 2010,
J/ApJS/191/124, Note (G2) of table 4)
g = Following references from GOODS-MUSIC catalog (Grazian+ 2006,
J/A+A/449/951, Note (2) of table 5)
f = Following references from FIREWORKS catalog (Wuyts+ 2008, J/ApJ/682/985,
Note (2) of redshift.dat)
Note (2): This column contains also source types and multi references for
table4b.dat. OPEG=Old Passively Evolving Galaxy; see Galametz et al.
2013, J/ApJS/206/10
--------------------------------------------------------------------------------
Global notes:
Note (G1): Same designation as the official CANDELS GOODS-S photometric
catalog (Guo et al. 2013, J/ApJS/207/24) for table5a or as the
official CANDELS UDS photometric catalog (Galametz et al. 2013,
J/ApJS/206/10) for table5b.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 16-Jul-2015